moa.classifiers.rules.featureranking.MeritFeatureRanking Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* MeritFeatureRanking.java
* Copyright (C) 2017 University of Porto, Portugal
* @author J. Duarte, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules.featureranking;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import moa.classifiers.rules.featureranking.messages.ChangeDetectedMessage;
import moa.classifiers.rules.featureranking.messages.MeritCheckMessage;
import moa.classifiers.rules.featureranking.messages.RuleExpandedMessage;
import moa.classifiers.rules.multilabel.core.ObservableMOAObject;
import moa.core.DoubleVector;
/**
* Merit Feature Ranking method
* João Duarte, João Gama,Feature ranking in hoeffding algorithms for regression. SAC 2017: 836-841
*/
public class MeritFeatureRanking extends AbstractFeatureRanking implements FeatureRanking{
/**
*
*/
private static final long serialVersionUID = 1L;
protected DoubleVector attributeImportance;
protected HashMap ruleInformation;
public MeritFeatureRanking() {
super();
this.attributeImportance = new DoubleVector();
this.ruleInformation = new HashMap();
}
public void update(ObservableMOAObject o, Object arg) {
if (arg instanceof MeritCheckMessage){
RuleInformation ri=ruleInformation.get(o);
if(ri==null)
{
ri=new RuleInformation();
ruleInformation.put(o, ri);
}
DoubleVector merits=ri.getCurrent();
if(!ri.isFirstAfterExpansion())
this.attributeImportance.subtractValues(merits);
MeritCheckMessage msg = (MeritCheckMessage) arg;
ri.updateCurrent(msg.getMerits());
merits=ri.getCurrent();
this.attributeImportance.addValues(merits);
}
else if (arg instanceof RuleExpandedMessage){
RuleInformation ri=ruleInformation.get(o);
if(!((RuleExpandedMessage)arg).isSpecialization())
ri.addNumLiterals();
}
else if (arg instanceof ChangeDetectedMessage) {
RuleInformation ri=ruleInformation.get(o);
this.attributeImportance.subtractValues(ri.getAccumulated());
ruleInformation.remove(o);
}
}
@Override
public DoubleVector getFeatureRankings() {
/*DoubleVector normRankings=null;
if(attributeImportance!=null){
double total=0;
for (int i=0; i> it=this.ruleInformation.entrySet().iterator();
while (it.hasNext()) {
Map.Entry pair = (Map.Entry)it.next();
accumulated.addValues(pair.getValue().getAccumulated());
}
return accumulated;
}
/*
* Rule information class
*/
public class RuleInformation{
private DoubleVector accumulated;
private DoubleVector current;
//private HashMap literalAttributes;
private boolean isFirstAfterExpansion;
private int numLiterals;
public RuleInformation() {
//literalAttributes=new HashMap();
isFirstAfterExpansion=false;
accumulated=new DoubleVector();
current=new DoubleVector();
numLiterals=0;
}
public DoubleVector getAccumulated() {
return accumulated;
}
public DoubleVector getCurrent() {
return current;
}
public void updateCurrent(DoubleVector merits){
DoubleVector newMerits=new DoubleVector(merits);
if(!isFirstAfterExpansion){
accumulated.subtractValues(current);
}
newMerits.scaleValues(1.0/(1+numLiterals));
accumulated.addValues(newMerits);
current=newMerits;
isFirstAfterExpansion=false;
}
public void addNumLiterals() {
/*boolean contains=false;
Iterator it=literalAttributes.iterator();
while (it.hasNext() && !contains){
if(it.next()==attribIndex)
contains=true;
}
if(!contains){
literalAttributes.add(attribIndex);
}*/
this.numLiterals++;
isFirstAfterExpansion=true;
}
public boolean isFirstAfterExpansion() {
return isFirstAfterExpansion;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy