moa.cluster.Cluster Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* Cluster.java
* Copyright (C) 2010 RWTH Aachen University, Germany
* @author Jansen ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.cluster;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import moa.AbstractMOAObject;
import com.yahoo.labs.samoa.instances.Instance;
public abstract class Cluster extends AbstractMOAObject {
private static final long serialVersionUID = 1L;
private double id = -1;
private double gtLabel = -1;
private HashMap measure_values;
public Cluster(){
this.measure_values = new HashMap();
}
/**
* @return the center of the cluster
*/
public abstract double[] getCenter();
/**
* Returns the weight of this cluster, not neccessarily normalized.
* It could, for instance, simply return the number of points contined
* in this cluster.
* @return the weight
*/
public abstract double getWeight();
/**
* Returns the probability of the given point belonging to
* this cluster.
*
* @param point
* @return a value between 0 and 1
*/
public abstract double getInclusionProbability(Instance instance);
//TODO: for non sphere cluster sample points, find out MIN MAX neighbours within cluster
//and return the relative distance
//public abstract double getRelativeHullDistance(Instance instance);
@Override
public void getDescription(StringBuilder sb, int i) {
sb.append("Cluster Object");
}
public void setId(double id) {
this.id = id;
}
public double getId() {
return id;
}
public boolean isGroundTruth(){
return gtLabel != -1;
}
public void setGroundTruth(double truth){
gtLabel = truth;
}
public double getGroundTruth(){
return gtLabel;
}
/**
* Samples this cluster by returning a point from inside it.
* @param random a random number source
* @return an Instance that lies inside this cluster
*/
public abstract Instance sample(Random random);
public void setMeasureValue(String measureKey, String value){
measure_values.put(measureKey, value);
}
public void setMeasureValue(String measureKey, double value){
measure_values.put(measureKey, Double.toString(value));
}
public String getMeasureValue(String measureKey){
if(measure_values.containsKey(measureKey))
return measure_values.get(measureKey);
else
return "";
}
protected void getClusterSpecificInfo(ArrayList infoTitle,ArrayList infoValue){
infoTitle.add("ClusterID");
infoValue.add(Integer.toString((int)getId()));
infoTitle.add("Type");
infoValue.add(getClass().getSimpleName());
double c[] = getCenter();
if(c!=null)
for (int i = 0; i < c.length; i++) {
infoTitle.add("Dim"+i);
infoValue.add(Double.toString(c[i]));
}
infoTitle.add("Weight");
infoValue.add(Double.toString(getWeight()));
}
public String getInfo() {
ArrayList infoTitle = new ArrayList();
ArrayList infoValue = new ArrayList();
getClusterSpecificInfo(infoTitle, infoValue);
StringBuffer sb = new StringBuffer();
//Cluster properties
sb.append("");
sb.append("");
int i = 0;
while(i < infoTitle.size() && i < infoValue.size()){
sb.append(""+infoTitle.get(i)+" "+infoValue.get(i)+" ");
i++;
}
sb.append("
");
//Evaluation info
sb.append("
");
sb.append("Evaluation
");
sb.append("");
Iterator miterator = measure_values.entrySet().iterator();
while(miterator.hasNext()) {
Map.Entry e = (Map.Entry)miterator.next();
sb.append(""+e.getKey()+" "+e.getValue()+" ");
}
sb.append("
");
sb.append("");
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy