moa.evaluation.MembershipMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* Cluster.java
* Copyright (C) 2010 RWTH Aachen University, Germany
* @author Jansen ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.evaluation;
import java.util.ArrayList;
import java.util.HashMap;
import moa.cluster.Clustering;
import moa.gui.visualization.DataPoint;
public class MembershipMatrix {
HashMap classmap;
int cluster_class_weights[][];
int cluster_sums[];
int class_sums[];
int total_entries;
int class_distribution[];
int total_class_entries;
int initalBuildTimestamp = -1;
public MembershipMatrix(Clustering foundClustering, ArrayList points) {
classmap = Clustering.classValues(points);
// int lastID = classmap.size()-1;
// classmap.put(-1, lastID);
int numClasses = classmap.size();
int numCluster = foundClustering.size()+1;
cluster_class_weights = new int[numCluster][numClasses];
class_distribution = new int[numClasses];
cluster_sums = new int[numCluster];
class_sums = new int[numClasses];
total_entries = 0;
total_class_entries = points.size();
for (int p = 0; p < points.size(); p++) {
int worklabel = classmap.get((int)points.get(p).classValue());
//real class distribution
class_distribution[worklabel]++;
boolean covered = false;
for (int c = 0; c < numCluster-1; c++) {
double prob = foundClustering.get(c).getInclusionProbability(points.get(p));
if(prob >= 1){
cluster_class_weights[c][worklabel]++;
class_sums[worklabel]++;
cluster_sums[c]++;
total_entries++;
covered = true;
}
}
if(!covered){
cluster_class_weights[numCluster-1][worklabel]++;
class_sums[worklabel]++;
cluster_sums[numCluster-1]++;
total_entries++;
}
}
initalBuildTimestamp = points.get(0).getTimestamp();
}
public int getClusterClassWeight(int i, int j){
return cluster_class_weights[i][j];
}
public int getClusterSum(int i){
return cluster_sums[i];
}
public int getClassSum(int j){
return class_sums[j];
}
public int getClassDistribution(int j){
return class_distribution[j];
}
public int getClusterClassWeightByLabel(int cluster, int classLabel){
return cluster_class_weights[cluster][classmap.get(classLabel)];
}
public int getClassSumByLabel(int classLabel){
return class_sums[classmap.get(classLabel)];
}
public int getClassDistributionByLabel(int classLabel){
return class_distribution[classmap.get(classLabel)];
}
public int getTotalEntries(){
return total_entries;
}
public int getNumClasses(){
return classmap.size();
}
public boolean hasNoiseClass(){
return classmap.containsKey(-1);
}
@Override
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("Membership Matrix\n");
for (int i = 0; i < cluster_class_weights.length; i++) {
for (int j = 0; j < cluster_class_weights[i].length; j++) {
sb.append(cluster_class_weights[i][j]+"\t ");
}
sb.append("| "+cluster_sums[i]+"\n");
}
//sb.append("-----------\n");
for (int i = 0; i < class_sums.length; i++) {
sb.append(class_sums[i]+"\t ");
}
sb.append("| "+total_entries+"\n");
sb.append("Real class distribution \n");
for (int i = 0; i < class_distribution.length; i++) {
sb.append(class_distribution[i]+"\t ");
}
sb.append("| "+total_class_entries+"\n");
return sb.toString();
}
public int getInitalBuildTimestamp(){
return initalBuildTimestamp;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy