moa.evaluation.MultiTargetWindowRegressionPerformanceEvaluator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* WindowRegressionPerformanceEvaluator.java
* Copyright (C) 2011 University of Waikato, Hamilton, New Zealand
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.evaluation;
import moa.core.Example;
import moa.core.Measurement;
import moa.core.ObjectRepository;
import moa.options.AbstractOptionHandler;
import com.github.javacliparser.IntOption;
import moa.tasks.TaskMonitor;
import com.yahoo.labs.samoa.instances.Instance;
import com.yahoo.labs.samoa.instances.InstanceData;
import com.yahoo.labs.samoa.instances.MultiLabelInstance;
import com.yahoo.labs.samoa.instances.Prediction;
/**
* Multi-target regression evaluator that updates evaluation results using a sliding window.
*
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
* @version $Revision: 7 $
*/
public class MultiTargetWindowRegressionPerformanceEvaluator extends AbstractOptionHandler
implements MultiTargetPerformanceEvaluator, RegressionPerformanceEvaluator {
private static final long serialVersionUID = 1L;
public IntOption widthOption = new IntOption("width",
'w', "Size of Window", 1000);
protected double TotalweightObserved = 0;
protected Estimator weightObserved;
protected Estimator squareError;
protected Estimator averageError;
protected int numClasses;
protected int numberOutputs;
public class Estimator {
protected double[] window;
protected int posWindow;
protected int lenWindow;
protected int SizeWindow;
protected double sum;
public Estimator(int sizeWindow) {
window = new double[sizeWindow];
SizeWindow = sizeWindow;
posWindow = 0;
}
public void add(double value) {
sum -= window[posWindow];
sum += value;
window[posWindow] = value;
posWindow++;
if (posWindow == SizeWindow) {
posWindow = 0;
}
}
public double total() {
return sum;
}
}
/* public void setWindowWidth(int w) {
this.width = w;
reset();
}*/
@Override
public void reset() {
reset(this.numClasses);
}
public void reset(int numClasses) {
this.numClasses = numClasses;
this.weightObserved = new Estimator(this.widthOption.getValue());
this.squareError = new Estimator(this.widthOption.getValue());
this.averageError = new Estimator(this.widthOption.getValue());
this.TotalweightObserved = 0;
}
@Override
public void addResult(Example example, double[] prediction) {
}
@Override
public Measurement[] getPerformanceMeasurements() {
return new Measurement[]{
new Measurement("classified instances",
getTotalWeightObserved()),
new Measurement("mean absolute error",
getMeanError()),
new Measurement("root mean squared error",
getSquareError())};
}
public double getTotalWeightObserved() {
return this.weightObserved.total();
}
public double getMeanError() {
return this.weightObserved.total() > 0.0 ? this.averageError.total()
/ (this.weightObserved.total()*this.numberOutputs) : 0.0;
}
public double getSquareError() {
return Math.sqrt(this.weightObserved.total() > 0.0 ? this.squareError.total()
/ (this.weightObserved.total()*this.numberOutputs) : 0.0);
}
@Override
public void getDescription(StringBuilder sb, int indent) {
Measurement.getMeasurementsDescription(getPerformanceMeasurements(),
sb, indent);
}
@Override
public void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
}
@Override
public void addResult(Example testInst, Prediction prediction) {
MultiLabelInstance inst=(MultiLabelInstance) testInst.getData();
double weight = inst.weight();
if (numberOutputs == 0) {
numberOutputs = inst.numberOutputTargets();
}
if (weight > 0.0) {
if (TotalweightObserved == 0) {
reset(inst.dataset().numClasses());
}
this.TotalweightObserved += weight;
this.weightObserved.add(weight);
if (prediction!=null) {
for (int i = 0; i< numberOutputs;i++){
double error=(inst.valueOutputAttribute(i) - prediction.getVote(i, 0));
this.squareError.add( error*error);
this.averageError.add(Math.abs(error));
}
}
//System.out.println(inst.classValue()+", "+prediction[0]);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy