moa.evaluation.WindowClassificationPerformanceEvaluator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* WindowClassificationPerformanceEvaluator.java
* Copyright (C) 2009 University of Waikato, Hamilton, New Zealand
* @author Albert Bifet ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.evaluation;
import moa.core.Example;
import moa.core.Measurement;
import moa.core.ObjectRepository;
import moa.options.AbstractOptionHandler;
import com.github.javacliparser.IntOption;
import moa.tasks.TaskMonitor;
import moa.core.Utils;
import com.yahoo.labs.samoa.instances.Instance;
import com.yahoo.labs.samoa.instances.InstanceData;
import com.yahoo.labs.samoa.instances.Prediction;
import java.util.LinkedList;
/**
* Classification evaluator that updates evaluation results using a sliding
* window.
*
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
* @author Jean Paul Barddal ([email protected])
* @version $Revision: 8 $
*
*
*/
public class WindowClassificationPerformanceEvaluator extends BasicClassificationPerformanceEvaluator {
private static final long serialVersionUID = 1L;
public IntOption widthOption = new IntOption("width",
'w', "Size of Window", 1000);
@Override
protected Estimator newEstimator() {
return new WindowEstimator(this.widthOption.getValue());
}
public class WindowEstimator implements Estimator {
protected double[] window;
protected int posWindow;
protected int lenWindow;
protected int SizeWindow;
protected double sum;
protected double qtyNaNs;
public WindowEstimator(int sizeWindow) {
window = new double[sizeWindow];
SizeWindow = sizeWindow;
posWindow = 0;
lenWindow = 0;
}
public void add(double value) {
double forget = window[posWindow];
if(!Double.isNaN(forget)){
sum -= forget;
}else qtyNaNs--;
if(!Double.isNaN(value)) {
sum += value;
}else qtyNaNs++;
window[posWindow] = value;
posWindow++;
if (posWindow == SizeWindow) {
posWindow = 0;
}
if (lenWindow < SizeWindow) {
lenWindow++;
}
}
public double estimation(){
return sum / (lenWindow - qtyNaNs);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy