moa.recommender.rc.utils.Vector Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* Vector.java
* Copyright (C) 2012 Universitat Politecnica de Catalunya
* @author Alex Catarineu ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.recommender.rc.utils;
import java.io.Serializable;
import java.util.Iterator;
import java.util.Set;
public abstract class Vector implements Serializable {
/**
*
*/
private static final long serialVersionUID = 2440314068879207731L;
abstract public int size();
abstract public void set(int index, double val);
abstract public void remove(int index);
abstract public Double get(int index);
abstract public Iterator> iterator();
abstract public Set getIdxs();
public double dotProduct(Vector vec) {
if (size() > vec.size()) return vec.dotProduct(this);
Iterator> it = iterator();
double ret = 0;
while(it.hasNext()) {
Pair ind = it.next();
Double val1 = ind.getSecond();
Double val2 = vec.get(ind.getFirst());
if (val2 != null) ret += val1*val2;
}
return ret;
}
public double norm() {
Iterator> it = iterator();
double ret = 0;
while(it.hasNext())
ret += Math.pow(it.next().getSecond(), 2);
return Math.sqrt(ret);
}
abstract public Vector copy();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy