moa.streams.generators.WaveformGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* WaveformGenerator.java
* Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
* @author Richard Kirkby ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.streams.generators;
import com.yahoo.labs.samoa.instances.Attribute;
import com.yahoo.labs.samoa.instances.DenseInstance;
import moa.core.FastVector;
import com.yahoo.labs.samoa.instances.Instance;
import com.yahoo.labs.samoa.instances.Instances;
import java.util.Random;
import moa.core.InstanceExample;
import com.yahoo.labs.samoa.instances.InstancesHeader;
import moa.core.ObjectRepository;
import moa.options.AbstractOptionHandler;
import com.github.javacliparser.FlagOption;
import com.github.javacliparser.IntOption;
import moa.streams.InstanceStream;
import moa.tasks.TaskMonitor;
/**
* Stream generator for the problem of predicting one of three waveform types.
*
* @author Richard Kirkby ([email protected])
* @version $Revision: 7 $
*/
public class WaveformGenerator extends AbstractOptionHandler implements
InstanceStream {
@Override
public String getPurposeString() {
return "Generates a problem of predicting one of three waveform types.";
}
private static final long serialVersionUID = 1L;
public static final int NUM_CLASSES = 3;
public static final int NUM_BASE_ATTRIBUTES = 21;
public static final int TOTAL_ATTRIBUTES_INCLUDING_NOISE = 40;
protected static final int hFunctions[][] = {
{0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0},
{0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0}};
public IntOption instanceRandomSeedOption = new IntOption(
"instanceRandomSeed", 'i',
"Seed for random generation of instances.", 1);
public FlagOption addNoiseOption = new FlagOption("addNoise", 'n',
"Adds noise, for a total of 40 attributes.");
protected InstancesHeader streamHeader;
protected Random instanceRandom;
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
// generate header
FastVector attributes = new FastVector();
int numAtts = this.addNoiseOption.isSet() ? TOTAL_ATTRIBUTES_INCLUDING_NOISE
: NUM_BASE_ATTRIBUTES;
for (int i = 0; i < numAtts; i++) {
attributes.addElement(new Attribute("att" + (i + 1)));
}
FastVector classLabels = new FastVector();
for (int i = 0; i < NUM_CLASSES; i++) {
classLabels.addElement("class" + (i + 1));
}
attributes.addElement(new Attribute("class", classLabels));
this.streamHeader = new InstancesHeader(new Instances(
getCLICreationString(InstanceStream.class), attributes, 0));
this.streamHeader.setClassIndex(this.streamHeader.numAttributes() - 1);
restart();
}
@Override
public long estimatedRemainingInstances() {
return -1;
}
@Override
public InstancesHeader getHeader() {
return this.streamHeader;
}
@Override
public boolean hasMoreInstances() {
return true;
}
@Override
public boolean isRestartable() {
return true;
}
@Override
public InstanceExample nextInstance() {
InstancesHeader header = getHeader();
Instance inst = new DenseInstance(header.numAttributes());
inst.setDataset(header);
int waveform = this.instanceRandom.nextInt(NUM_CLASSES);
int choiceA = 0, choiceB = 0;
switch (waveform) {
case 0:
choiceA = 0;
choiceB = 1;
break;
case 1:
choiceA = 0;
choiceB = 2;
break;
case 2:
choiceA = 1;
choiceB = 2;
break;
}
double multiplierA = this.instanceRandom.nextDouble();
double multiplierB = 1.0 - multiplierA;
for (int i = 0; i < NUM_BASE_ATTRIBUTES; i++) {
inst.setValue(i, (multiplierA * hFunctions[choiceA][i])
+ (multiplierB * hFunctions[choiceB][i])
+ this.instanceRandom.nextGaussian());
}
if (this.addNoiseOption.isSet()) {
for (int i = NUM_BASE_ATTRIBUTES; i < TOTAL_ATTRIBUTES_INCLUDING_NOISE; i++) {
inst.setValue(i, this.instanceRandom.nextGaussian());
}
}
inst.setClassValue(waveform);
return new InstanceExample(inst);
}
@Override
public void restart() {
this.instanceRandom = new Random(this.instanceRandomSeedOption.getValue());
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy