moa.classifiers.core.driftdetection.EDDM Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* EDDM.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
* @author Manuel Baena ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package moa.classifiers.core.driftdetection;
import moa.core.ObjectRepository;
import moa.tasks.TaskMonitor;
/**
* Drift detection method based in EDDM method of Manuel Baena et al.
*
* Early Drift Detection Method. Manuel Baena-Garcia, Jose Del Campo-Avila,
* Raúl Fidalgo, Albert Bifet, Ricard Gavalda, Rafael Morales-Bueno. In Fourth
* International Workshop on Knowledge Discovery from Data Streams, 2006.
*
* @author Manuel Baena ([email protected])
* @version $Revision: 7 $
*/
public class EDDM extends AbstractChangeDetector {
/**
*
*/
private static final long serialVersionUID = 140980267062162000L;
private static final double FDDM_OUTCONTROL = 0.9;
private static final double FDDM_WARNING = 0.95;
private static final double FDDM_MINNUMINSTANCES = 30;
private double m_numErrors;
private int m_minNumErrors = 30;
private int m_n;
private int m_d;
private int m_lastd;
private double m_mean;
private double m_stdTemp;
private double m_m2smax;
private int m_lastLevel;
public EDDM() {
resetLearning();
}
@Override
public void resetLearning() {
m_n = 1;
m_numErrors = 0;
m_d = 0;
m_lastd = 0;
m_mean = 0.0;
m_stdTemp = 0.0;
m_m2smax = 0.0;
//m_lastLevel = DDM_INCONTROL_LEVEL;
this.estimation = 0.0;
}
@Override
public void input(double prediction) {
// prediction must be 1 or 0
// It monitors the error rate
// System.out.print(prediction + " " + m_n + " " + probability + " ");
if (this.isChangeDetected == true || this.isInitialized == false) {
resetLearning();
this.isInitialized = true;
}
this.isChangeDetected = false;
m_n++;
if (prediction == 1.0) {
this.isWarningZone = false;
this.delay = 0;
m_numErrors += 1;
m_lastd = m_d;
m_d = m_n - 1;
int distance = m_d - m_lastd;
double oldmean = m_mean;
m_mean = m_mean + ((double) distance - m_mean) / m_numErrors;
this.estimation = m_mean;
m_stdTemp = m_stdTemp + (distance - m_mean) * (distance - oldmean);
double std = Math.sqrt(m_stdTemp / m_numErrors);
double m2s = m_mean + 2 * std;
// System.out.print(m_numErrors + " " + m_mean + " " + std + " " +
// m2s + " " + m_m2smax + " ");
if (m2s > m_m2smax) {
if (m_n > FDDM_MINNUMINSTANCES) {
m_m2smax = m2s;
}
//m_lastLevel = DDM_INCONTROL_LEVEL;
// System.out.print(1 + " ");
} else {
double p = m2s / m_m2smax;
// System.out.print(p + " ");
if (m_n > FDDM_MINNUMINSTANCES && m_numErrors > m_minNumErrors
&& p < FDDM_OUTCONTROL) {
//System.out.println(m_mean + ",D");
this.isChangeDetected = true;
//resetLearning();
//return DDM_OUTCONTROL_LEVEL;
} else if (m_n > FDDM_MINNUMINSTANCES
&& m_numErrors > m_minNumErrors && p < FDDM_WARNING) {
//System.out.println(m_mean + ",W");
//m_lastLevel = DDM_WARNING_LEVEL;
this.isWarningZone = true;
//return DDM_WARNING_LEVEL;
} else {
this.isWarningZone = false;
//System.out.println(m_mean + ",N");
//m_lastLevel = DDM_INCONTROL_LEVEL;
//return DDM_INCONTROL_LEVEL;
}
}
} else {
// System.out.print(m_numErrors + " " + m_mean + " " +
// Math.sqrt(m_stdTemp/m_numErrors) + " " + (m_mean +
// 2*Math.sqrt(m_stdTemp/m_numErrors)) + " " + m_m2smax + " ");
// System.out.print(((m_mean +
// 2*Math.sqrt(m_stdTemp/m_numErrors))/m_m2smax) + " ");
}
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy