
moa.classifiers.core.driftdetection.PageHinkleyDM Maven / Gradle / Ivy
/*
* DDM.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
* @author Manuel Baena ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package moa.classifiers.core.driftdetection;
import com.github.javacliparser.FloatOption;
import com.github.javacliparser.IntOption;
import moa.core.ObjectRepository;
import moa.tasks.TaskMonitor;
/**
* Drift detection method based in Page Hinkley Test.
*
*
* @author Manuel Baena ([email protected])
* @version $Revision: 7 $
*/
public class PageHinkleyDM extends AbstractChangeDetector {
private static final long serialVersionUID = -3518369648142099719L;
public IntOption minNumInstancesOption = new IntOption(
"minNumInstances",
'n',
"The minimum number of instances before permitting detecting change.",
30, 0, Integer.MAX_VALUE);
public FloatOption deltaOption = new FloatOption("delta", 'd',
"Delta parameter of the Page Hinkley Test", 0.005, 0.0, 1.0);
public FloatOption lambdaOption = new FloatOption("lambda", 'l',
"Lambda parameter of the Page Hinkley Test", 50, 0.0, Float.MAX_VALUE);
public FloatOption alphaOption = new FloatOption("alpha", 'a',
"Alpha parameter of the Page Hinkley Test", 1 - 0.0001, 0.0, 1.0);
private int m_n;
private double sum;
private double x_mean;
private double alpha;
private double delta;
private double lambda;
public PageHinkleyDM() {
resetLearning();
}
@Override
public void resetLearning() {
m_n = 1;
x_mean = 0.0;
sum = 0.0;
delta = this.deltaOption.getValue();
alpha = this.alphaOption.getValue();
lambda = this.lambdaOption.getValue();
}
@Override
public void input(double x) {
// It monitors the error rate
if (this.isChangeDetected == true || this.isInitialized == false) {
resetLearning();
this.isInitialized = true;
}
x_mean = x_mean + (x - x_mean) / (double) m_n;
sum = this.alpha * sum + (x - x_mean - this.delta);
m_n++;
// System.out.print(prediction + " " + m_n + " " + (m_p+m_s) + " ");
this.estimation = x_mean;
this.isChangeDetected = false;
this.isWarningZone = false;
this.delay = 0;
if (m_n < this.minNumInstancesOption.getValue()) {
return;
}
if (sum > this.lambda) {
this.isChangeDetected = true;
}
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy