moa.classifiers.rules.multilabel.core.AttributeExpansionSuggestion Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* AttributeSplitSuggestion.java
* Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
* @author Richard Kirkby ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.classifiers.rules.multilabel.core;
import moa.AbstractMOAObject;
import moa.classifiers.rules.core.Predicate;
import moa.core.DoubleVector;
/**
* Class for computing attribute split suggestions given a split test.
*
* @author João Duarte ([email protected])
* @version $Revision: 1 $
*/
public class AttributeExpansionSuggestion extends AbstractMOAObject implements
Comparable {
private static final long serialVersionUID = 1L;
public Predicate predicate;
public DoubleVector[][] resultingNodeStatistics;
public double merit;
public Predicate getPredicate() {
return predicate;
}
public void setPredicate(Predicate predicate) {
this.predicate=predicate;
}
public DoubleVector[][] getResultingNodeStatistics() {
return resultingNodeStatistics;
}
public double getMerit() {
return merit;
}
public AttributeExpansionSuggestion(Predicate predicate, DoubleVector[][] resultingNodeStatistics, double merit) {
this.predicate = predicate;
this.resultingNodeStatistics = resultingNodeStatistics;
this.merit = merit;
}
@Override
public int compareTo(AttributeExpansionSuggestion comp) {
return Double.compare(this.merit, comp.merit);
}
@Override
public void getDescription(StringBuilder sb, int indent) {
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy