
moa.classifiers.rules.multilabel.errormeasurers.RelativeMeanAbsoluteDeviationMT Maven / Gradle / Ivy
/*
* RelativeMeanAbsoluteDeviationMT.java
* Copyright (C) 2017 University of Porto, Portugal
* @author J. Duarte, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules.multilabel.errormeasurers;
import com.yahoo.labs.samoa.instances.Prediction;
/**
* Relative Mean Absolute Deviation for multitarget and with fading factor
*/
public class RelativeMeanAbsoluteDeviationMT extends AbstractMultiTargetErrorMeasurer {
/**
*
*/
protected double weightSeen;
protected double [] sumError;
protected double [] sumY;
protected double [] sumErrorToTargetMean;
private static final long serialVersionUID = 1L;
protected boolean hasStarted;
protected int numLearnedOutputs;
@Override
public void addPrediction(Prediction prediction, Prediction trueClass, double weight) {
int numOutputs=prediction.numOutputAttributes();
if (!hasStarted){
sumError=new double[numOutputs];
sumY=new double[numOutputs];
sumErrorToTargetMean=new double[numOutputs];
hasStarted=true;
for(int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy