All Downloads are FREE. Search and download functionalities are using the official Maven repository.

moa.clusterers.clustream.ClustreamKernel Maven / Gradle / Ivy

Go to download

Massive On-line Analysis is an environment for massive data mining. MOA provides a framework for data stream mining and includes tools for evaluation and a collection of machine learning algorithms. Related to the WEKA project, also written in Java, while scaling to more demanding problems.

There is a newer version: 2024.07.0
Show newest version
/*
 *    ClustreamKernel.java
 *    Copyright (C) 2010 RWTH Aachen University, Germany
 *    @author Jansen ([email protected])
 *
 *    Licensed under the Apache License, Version 2.0 (the "License");
 *    you may not use this file except in compliance with the License.
 *    You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 *    
 *    
 */
package moa.clusterers.clustream;

import java.util.ArrayList;
import java.util.Random;
import moa.cluster.CFCluster;
import com.yahoo.labs.samoa.instances.Instance;

public class ClustreamKernel extends CFCluster {
	private static final long serialVersionUID = 1L;

	private final static double EPSILON = 0.00005;
    public static final double MIN_VARIANCE = 1e-50;

    protected double LST;
    protected double SST;

    int m;
    double t;


    public ClustreamKernel( Instance instance, int dimensions, long timestamp , double t, int m) {
        super(instance, dimensions);
        this.t = t;
        this.m = m;
        this.LST = timestamp;
		this.SST = timestamp*timestamp;
    }

    public ClustreamKernel( ClustreamKernel cluster, double t, int m ) {
        super(cluster);
        this.t = t;
        this.m = m;
        this.LST = cluster.LST;
        this.SST = cluster.SST;
    }

    public void insert( Instance instance, long timestamp ) {
		N++;
		LST += timestamp;
		SST += timestamp*timestamp;
	
		for ( int i = 0; i < instance.numValues(); i++ ) {
		    LS[i] += instance.value(i);
		    SS[i] += instance.value(i)*instance.value(i);
		}
    }

    @Override
    public void add( CFCluster other2 ) {
        ClustreamKernel other = (ClustreamKernel) other2;
		assert( other.LS.length == this.LS.length );
		this.N += other.N;
		this.LST += other.LST;
		this.SST += other.SST;
	
		for ( int i = 0; i < LS.length; i++ ) {
		    this.LS[i] += other.LS[i];
		    this.SS[i] += other.SS[i];
		}
    }

    public double getRelevanceStamp() {
		if ( N < 2*m )
		    return getMuTime();
	
		return getMuTime() + getSigmaTime() * getQuantile( ((double)m)/(2*N) );
    }

    private double getMuTime() {
    	return LST / N;
    }

    private double getSigmaTime() {
    	return Math.sqrt(SST/N - (LST/N)*(LST/N));
    }

    private double getQuantile( double z ) {
		assert( z >= 0 && z <= 1 );
		return Math.sqrt( 2 ) * inverseError( 2*z - 1 );
    }

    @Override
    public double getRadius() {
        //trivial cluster
        if(N == 1) return 0;
        if(t==1)
            t=1;

        return getDeviation()*radiusFactor;
    }

    @Override
    public CFCluster getCF(){
        return this;
    }


    private double getDeviation(){
        double[] variance = getVarianceVector();
        double sumOfDeviation = 0.0;
        for (int i = 0; i < variance.length; i++) {
            double d = Math.sqrt(variance[i]);
            sumOfDeviation += d;
        }
        return sumOfDeviation / variance.length;
    }

    /**
     * @return this kernels' center
     */
    @Override
    public double[] getCenter() {
        assert (!this.isEmpty());
        double res[] = new double[this.LS.length];
        for (int i = 0; i < res.length; i++) {
            res[i] = this.LS[i] / N;
        }
        return res;
    }

    /**
     * See interface Cluster
     * @param instance
     */
    @Override
    public double getInclusionProbability(Instance instance) {
        //trivial cluster
        if(N == 1){
            double distance = 0.0;
            for (int i = 0; i < LS.length; i++) {
                double d = LS[i] - instance.value(i);
                distance += d * d;
            }
            distance = Math.sqrt(distance);
            if( distance < EPSILON )
                return 1.0;
            return 0.0;
        }
        else{
            double dist = calcNormalizedDistance(instance.toDoubleArray());
            if(dist <= getRadius()){
                return 1;
            }
            else{
                return 0;
            }
//            double res = AuxiliaryFunctions.distanceProbabilty(dist, LS.length);
//            return res;
        }
    }

    private double[] getVarianceVector() {
        double[] res = new double[this.LS.length];
        for (int i = 0; i < this.LS.length; i++) {
            double ls = this.LS[i];
            double ss = this.SS[i];

            double lsDivN = ls / this.getWeight();
            double lsDivNSquared = lsDivN * lsDivN;
            double ssDivN = ss / this.getWeight();
            res[i] = ssDivN - lsDivNSquared;

            // Due to numerical errors, small negative values can occur.
            // We correct this by settings them to almost zero.
            if (res[i] <= 0.0) {
                if (res[i] > -EPSILON) {
                    res[i] = MIN_VARIANCE;
                }
            }
            else{
                
            }
        }
        return res;
    }

    /**
     * Check if this cluster is empty or not.
     * @return true if the cluster has no data points,
     * false otherwise.
     */
    public boolean isEmpty() {
        return this.N == 0;
    }

    /**
     * Calculate the normalized euclidean distance (Mahalanobis distance for
     * distribution w/o covariances) to a point.
     * @param point The point to which the distance is calculated.
     * @return The normalized distance to the cluster center.
     *
     * TODO: check whether WEIGHTING is correctly applied to variances
     */
    //???????
    private double calcNormalizedDistance(double[] point) {
        double[] variance = getVarianceVector();
        double[] center = getCenter();
        double res = 0.0;

        for (int i = 0; i < center.length; i++) {
            double diff = center[i] - point[i];
            res += (diff * diff);// variance[i];
        }
        return Math.sqrt(res);
    }

        /**
     * Approximates the inverse error function. Clustream needs this.
     * @param x
     */
    public static double inverseError(double x) {
        double z = Math.sqrt(Math.PI) * x;
        double res = (z) / 2;

        double z2 = z * z;
        double zProd = z * z2; // z^3
        res += (1.0 / 24) * zProd;

        zProd *= z2;  // z^5
        res += (7.0 / 960) * zProd;

        zProd *= z2;  // z^7
        res += (127 * zProd) / 80640;

        zProd *= z2;  // z^9
        res += (4369 * zProd) / 11612160;

        zProd *= z2;  // z^11
        res += (34807 * zProd) / 364953600;

        zProd *= z2;  // z^13
        res += (20036983 * zProd) / 797058662400d;

        return res;
    }

    @Override
    protected void getClusterSpecificInfo(ArrayList infoTitle, ArrayList infoValue) {
        super.getClusterSpecificInfo(infoTitle, infoValue);
        infoTitle.add("Deviation");

        double[] variance = getVarianceVector();
        double sumOfDeviation = 0.0;
        for (int i = 0; i < variance.length; i++) {
            double d = Math.sqrt(variance[i]);
            sumOfDeviation += d;
        }

        sumOfDeviation/= variance.length;
        
        infoValue.add(Double.toString(sumOfDeviation));
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy