
moa.tasks.RunTasks Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* RunTasks.java
* Copyright (C) 2011 University of Waikato, Hamilton, New Zealand
* @author Richard Kirkby ([email protected])
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.tasks;
import moa.core.ObjectRepository;
import moa.options.ClassOption;
import com.github.javacliparser.FloatOption;
import com.github.javacliparser.StringOption;
/**
* Task for running several experiments modifying values of parameters.
*
* @author Richard Kirkby ([email protected])
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
* @version $Revision: 7 $
*/
public class RunTasks extends AuxiliarMainTask {
@Override
public String getPurposeString() {
return "Runs several experiments modifying values of parameters.";
}
private static final long serialVersionUID = 1L;
public ClassOption taskOption = new ClassOption("task", 't',
"Task to do.", Task.class, "EvaluatePrequential -l active.ALUncertainty -i 1000000 -d temp.txt");
public StringOption classifierParameterOption = new StringOption("classifierParameter", 'p',
"Classifier parameter to vary.", "b");
public FloatOption firstValueOption = new FloatOption("firstValue",
'f', "First value", 0.0);
public FloatOption lastValueOption = new FloatOption("lastValue",
'l', "Last value", 1.0);
public FloatOption incrementValueOption = new FloatOption("incrementValue",
'i', "Increment value", 0.1);
@Override
public Class> getTaskResultType() {
return this.task.getTaskResultType();
}
protected Task task;
@Override
protected Object doMainTask(TaskMonitor monitor, ObjectRepository repository) {
Object result = null;
String commandString = this.taskOption.getValueAsCLIString();
//for each possible value of the parameter
for (double valueParameter = this.firstValueOption.getValue();
valueParameter <= this.lastValueOption.getValue();
valueParameter += this.incrementValueOption.getValue()) {
//Add parameter
this.task = (Task) getPreparedClassOption(this.taskOption);
if (this.task instanceof EvaluatePrequential) {
String classifier = ((EvaluatePrequential) this.task).learnerOption.getValueAsCLIString();
((EvaluatePrequential) this.task).learnerOption.setValueViaCLIString(classifier + " -" + classifierParameterOption.getValue() + " " + valueParameter);
}
if (this.task instanceof EvaluateInterleavedTestThenTrain) {
String classifier = ((EvaluateInterleavedTestThenTrain) this.task).learnerOption.getValueAsCLIString();
((EvaluateInterleavedTestThenTrain) this.task).learnerOption.setValueViaCLIString(classifier + " -" + classifierParameterOption.getValue() + " " + valueParameter);
}
//Run task
result = this.task.doTask(monitor, repository);
//System.out.println(((AbstractOptionHandler) this.task).getCLICreationString(Task.class));
}
return result;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy