![JAR search and dependency download from the Maven repository](/logo.png)
moa.classifiers.meta.BOLE Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
The newest version!
/*
* BOLE.java
* Copyright (C) 2015 Santos, Barros
* @authors Silas G. T. C. Santos ([email protected])
* Roberto Souto Maior de Barros ([email protected])
* @version $Version: 1 $
*
* Evolved from ADOB.java
* Copyright (C) 2014 Santos, Goncalves, Barros
* @author Silas G. T. C. Santos ([email protected])
* Paulo M. Goncalves Jr. ([email protected])
* Roberto S. M. Barros ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Boosting-like Online Learning Ensemble (BOLE).
*
* published as:
* Roberto Souto Maior de Barros, Silas Garrido T. de Carvalho Santos,
* and Paulo Mauricio Goncalves Jr.:
* A Boosting-like Online Learning Ensemble.
* In Proceedings of IEEE International Joint Conference
* on Neural Networks (IJCNN), Vancouver, Canada, 2016.
* DOI: 10.1109/IJCNN.2016.7727427
*/
package moa.classifiers.meta;
import moa.classifiers.MultiClassClassifier;
import moa.classifiers.AbstractClassifier;
import moa.classifiers.Classifier;
import moa.core.DoubleVector;
import moa.core.Measurement;
import moa.core.MiscUtils;
import moa.options.ClassOption;
import com.github.javacliparser.FlagOption;
import com.github.javacliparser.FloatOption;
import com.github.javacliparser.IntOption;
import com.yahoo.labs.samoa.instances.Instance;
public class BOLE extends AbstractClassifier implements MultiClassClassifier {
private static final long serialVersionUID = 1L;
public ClassOption baseLearnerOption = new ClassOption("baseLearner", 'l',
"Classifier to train.", Classifier.class,
"drift.SingleClassifierDrift -l trees.HoeffdingTree -d (DDM -n 7 -w 1.2 -o 1.95)");
public IntOption ensembleSizeOption = new IntOption("ensembleSize", 's',
"The number of models to boost.", 10, 1, Integer.MAX_VALUE);
public FlagOption pureBoostOption = new FlagOption("pureBoost",
'p', "Boost with weights only; no poisson.");
public FlagOption breakVotesOption = new FlagOption("breakVotes",
'b', "Break Votes? unchecked=no, checked=yes");
public FloatOption errorBoundOption = new FloatOption("errorBound",
'e', "Error bound percentage for allowing experts to vote.",
0.5, 0.1, 1.0);
public FloatOption weightShiftOption = new FloatOption("weightShift",
'w', "Weight shift associated with the error bound.",
0.0, 0.0, 5.0);
private double memberWeight;
private double key_acc;
private int key_position, i, j;
private int maxAcc, minAcc, pos;
private double lambda_d, k;
private boolean correct, okay;
private double em, Bm;
protected Classifier[] ensemble;
protected int[] orderPosition;
protected double[] scms;
protected double[] swms;
@Override
public String getPurposeString() {
return "Boosting-like Online Learning Ensemble (BOLE)";
}
@Override
public void resetLearningImpl() {
this.ensemble = new Classifier[this.ensembleSizeOption.getValue()];
this.orderPosition = new int[this.ensemble.length];
Classifier baseLearner = (Classifier) getPreparedClassOption(this.baseLearnerOption);
baseLearner.resetLearning();
for (i = 0; i < this.ensemble.length; i++) {
this.ensemble[i] = baseLearner.copy();
this.orderPosition[i] = i;
}
this.scms = new double[this.ensemble.length];
this.swms = new double[this.ensemble.length];
}
@Override
public void trainOnInstanceImpl(Instance inst) {
// Calculates current accuracy of experts
double[] acc = new double[this.ensemble.length];
for (i = 0; i < this.ensemble.length; i++) {
acc[i] = this.scms[this.orderPosition[i]] + this.swms[this.orderPosition[i]];
if (acc[i] != 0.0) {
acc[i] = this.scms[this.orderPosition[i]] / acc[i];
}
}
// Sort by accuracy in ascending order
for (i = 1; i < this.ensemble.length; i++) {
key_position = this.orderPosition[i];
key_acc = acc[i];
j = i - 1;
while ( (j >=0) && (acc[j] < key_acc) ) {
this.orderPosition[j+1] = this.orderPosition[j];
acc[j+1] = acc[j];
j--;
}
this.orderPosition[j+1] = key_position;
acc[j+1] = key_acc;
}
correct = false;
maxAcc = 0;
minAcc = this.ensemble.length - 1;
lambda_d = 1.0;
for (i = 0; i < this.ensemble.length; i++) {
if (correct) {
pos = this.orderPosition[maxAcc];
maxAcc++;
} else {
pos = this.orderPosition[minAcc];
minAcc--;
}
if (this.pureBoostOption.isSet())
k = lambda_d;
else
k = MiscUtils.poisson(lambda_d, this.classifierRandom);
if (k > 0.0) {
Instance weightedInst = (Instance) inst.copy();
weightedInst.setWeight(inst.weight() * k);
this.ensemble[pos].trainOnInstance(weightedInst);
}
// Increases or decreases lambda based on the prediction of instance
if (this.ensemble[pos].correctlyClassifies(inst)) {
this.scms[pos] += lambda_d;
lambda_d *= (this.trainingWeightSeenByModel / (2 * this.scms[pos]));
correct = true;
} else {
this.swms[pos] += lambda_d;
lambda_d *= (this.trainingWeightSeenByModel / (2 * this.swms[pos]));
correct = false;
}
}
}
protected double getEnsembleMemberWeight(int i) {
if ( (this.scms[i] > 0.0) && (this.swms[i] > 0.0) ) {
em = this.swms[i] / (this.scms[i] + this.swms[i]);
if (em <= this.errorBoundOption.getValue()) {
Bm = em / (1.0 - em);
okay = true;
return Math.log(1.0 / Bm);
}
}
okay = false;
return 0.0;
}
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
for (i = 0; i < this.ensemble.length; i++) {
memberWeight = getEnsembleMemberWeight(i) + this.weightShiftOption.getValue();
if (okay) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(memberWeight);
combinedVote.addValues(vote);
}
}
else if (this.breakVotesOption.isSet()) {
break;
}
}
return combinedVote.getArrayRef();
}
public boolean isRandomizable() {
return true;
}
@Override
public void getModelDescription(StringBuilder out, int indent) {
// TODO Auto-generated method stub
}
@Override
protected Measurement[] getModelMeasurementsImpl() {
return new Measurement[]{new Measurement("ensemble size",
this.ensemble != null ? this.ensemble.length : 0)};
}
@Override
public Classifier[] getSubClassifiers() {
return this.ensemble.clone();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy