![JAR search and dependency download from the Maven repository](/logo.png)
moa.classifiers.rules.BinaryClassifierFromRegressor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
The newest version!
/*
* BinaryClassifierFromRegressor.java
* Copyright (C) 2017 University of Porto, Portugal
* @author J. Duarte, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules;
import com.yahoo.labs.samoa.instances.Instance;
import moa.classifiers.AbstractClassifier;
import moa.classifiers.Classifier;
import moa.classifiers.Regressor;
import moa.core.Measurement;
import moa.options.ClassOption;
/**
* Function that convertes a regressor into a binary classifier
* baseLearnerOption- regressor learner selection
*/
public class BinaryClassifierFromRegressor extends AbstractClassifier {
/**
*
*/
public ClassOption baseLearnerOption = new ClassOption("baseLearner", 'r',
"Regressor to train.", Regressor.class, "rules.AMRulesRegressor");
private static final long serialVersionUID = 8271864290912280188L;
private Classifier regressor;
@Override
public boolean isRandomizable() {
// TODO Auto-generated method stub
return false;
}
@Override
public double[] getVotesForInstance(Instance inst) {
//TODO: use a parameter determining the function to use to return the output.
//Current function is the step function. By default should return regressor values
double vote=this.regressor.getVotesForInstance(inst)[0]; //Maybe pass the value through a sigmoid function
double [] ret = new double[2];
if (vote < 0.5){
ret[0]=1;
ret[1]=0;
}
else{
ret[0]=0;
ret[1]=1;
}
return ret;
}
@Override
public void resetLearningImpl() {
this.regressor = (Classifier) getPreparedClassOption(this.baseLearnerOption);
this.regressor.resetLearning();
}
@Override
public void trainOnInstanceImpl(Instance inst) {
this.regressor.trainOnInstance(inst);
}
@Override
protected Measurement[] getModelMeasurementsImpl() {
return this.regressor.getModelMeasurements();
}
@Override
public void getModelDescription(StringBuilder out, int indent) {
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy