![JAR search and dependency download from the Maven repository](/logo.png)
moa.classifiers.rules.multilabel.functions.MultiLabelNaiveBayes Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
The newest version!
/*
* MultiLabelNaiveBayes.java
* Copyright (C) 2017 University of Porto, Portugal
* @author J. Duarte, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules.multilabel.functions;
import moa.classifiers.MultiLabelClassifier;
import moa.classifiers.bayes.NaiveBayes;
import moa.classifiers.rules.functions.Perceptron;
import moa.options.ClassOption;
/**
* Binary relevance with Naive Bayes
*/
public class MultiLabelNaiveBayes extends AbstractAMRulesFunctionBasicMlLearner
implements MultiLabelClassifier, AMRulesFunction {
/**
*
*/
private static final long serialVersionUID = 1L;
@Override
protected void init(){
baseLearnerOption=new ClassOption("baseLearner", 'l',
"NaiveBayes", NaiveBayes.class, "moa.classifiers.bayes.NaiveBayes");
}
@Override
public String getPurposeString() {
return "Uses an ensemble of rules.Perceptron to preform multitarget regression.\n"
+ "Extends BasicMultiLabelLearner by allowing only rules.Perceptron";
}
@Override
public void resetWithMemory() {
//for (int i = 0; i < this.ensemble.length; i++) {
//TODO: JD - reset all statistics? how can we keep some memory?
//}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy