All Downloads are FREE. Search and download functionalities are using the official Maven repository.

moa.classifiers.rules.multilabel.functions.MultiTargetMeanRegressor Maven / Gradle / Ivy

Go to download

Massive On-line Analysis is an environment for massive data mining. MOA provides a framework for data stream mining and includes tools for evaluation and a collection of machine learning algorithms. Related to the WEKA project, also written in Java, while scaling to more demanding problems.

The newest version!
/*
 *    MultiTargetMeanRegressor.java
 *    Copyright (C) 2017 University of Porto, Portugal
 *    @author J. Duarte, J. Gama
 *
 *    Licensed under the Apache License, Version 2.0 (the "License");
 *    you may not use this file except in compliance with the License.
 *    You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 *
 *
 */
package moa.classifiers.rules.multilabel.functions;

import moa.classifiers.MultiTargetRegressor;
import moa.classifiers.multitarget.BasicMultiTargetRegressor;
import moa.classifiers.rules.functions.TargetMean;
import moa.options.ClassOption;

import com.yahoo.labs.samoa.instances.Instance;

/**
 *  Target mean regressor
 *
 */



public class MultiTargetMeanRegressor extends AbstractAMRulesFunctionBasicMlLearner
		implements MultiTargetRegressor, AMRulesFunction {

	/**
	 * 
	 */
	private static final long serialVersionUID = 1L;

	@Override
	protected void init(){
		baseLearnerOption=new ClassOption("baseLearner", 'l',
				"TargetMean", TargetMean.class, "TargetMean") ;
	}

	@Override
	public String getPurposeString() {
		return "Uses an ensemble of rules.TargetMean to perform multitarget regression.\n"
				+ "Extends BasicMultiTargetRegressor by allowing only rules.TargetMean";
	}

	@Override
	public void resetWithMemory() {
		for (int i = 0; i < this.ensemble.length; i++) {
			TargetMean tm=new TargetMean((TargetMean)this.ensemble[i]);
			double mean=tm.getVotesForInstance((Instance)null)[0];
			tm.reset(mean, 1);
			this.ensemble[i] = tm;
		}
	}
	
	
	
	
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy