![JAR search and dependency download from the Maven repository](/logo.png)
moa.classifiers.rules.multilabel.functions.StackedPredictor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
The newest version!
/*
* StackedPredictor.java
* Copyright (C) 2017 University of Porto, Portugal
* @author J. Duarte, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules.multilabel.functions;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Random;
import moa.classifiers.AbstractMultiLabelLearner;
import moa.classifiers.MultiTargetRegressor;
import moa.classifiers.rules.core.Utils;
import moa.core.Measurement;
import com.github.javacliparser.FlagOption;
import com.github.javacliparser.FloatOption;
import com.github.javacliparser.IntOption;
import com.yahoo.labs.samoa.instances.MultiLabelInstance;
import com.yahoo.labs.samoa.instances.MultiLabelPrediction;
import com.yahoo.labs.samoa.instances.Prediction;
public class StackedPredictor extends AbstractMultiLabelLearner implements
MultiTargetRegressor, AMRulesFunction {
/**
* Multi-Target Stacked Predictor for regression
*/
private static final long serialVersionUID = 1L;
//THRESHOLD for normalizing attribute and target values
private final double SD_THRESHOLD = 0.0000001;
// Parameters and options
public FlagOption constantLearningRatioDecayOption = new FlagOption(
"learningRatio_Decay_set_constant", 'd',
"Learning Ratio Decay in Perceptron set to be constant. (The next parameter).");
public FloatOption learningRatioOption = new FloatOption(
"learningRatio", 'l',
"Learning Ratio to use for training the 1st layer.", 0.025);
public FloatOption learningRatio2ndLayerOption = new FloatOption(
"learningRatio2ndLayer", 'n',
"Learning Ratio to use in the second layer.", 0.001);
public FloatOption learningRateDecayOption = new FloatOption(
"learningRateDecay", 'm',
" Learning Rate decay to use for training the 1st layer.", 0.001);
public FlagOption skipStackingOption = new FlagOption(
"skipStackingOption", 's',
"Predicts the outputs of the first layer (no dependence among output is computed)");
public IntOption randomSeedOption = new IntOption("randomSeed", 'r',
"Seed for random behaviour of the classifier.", 1);
public FlagOption printWeightsOption = new FlagOption(
"printWeights", 'p',
"Outputs the 2nd layer weights as measurements.");
/*
* Other class attributes
*/
private boolean hasStarted;
//Weight seen so far
private double count;
//Input attributes statistics
private double [] inAttrSum;
private double [] inAttrSquaredSum;
//Output attributes statistics
private double [] outAttrSum;
private double [] outAttrSquaredSum;
//First Layer Weights
private double [][] layer1Weights;
//Second Layer Weights
private double [][] layer2Weights;
//Algorithm auxiliary variables
double currentLearningRate;
LinkedList numericIndices;
/*
* Algorithm's behavior
*/
@Override
public boolean isRandomizable() {
return true;
}
@Override
public void resetWithMemory() {
currentLearningRate=this.learningRatioOption.getValue();
}
@Override
public void trainOnInstanceImpl(MultiLabelInstance instance) {
int numOutputs=instance.numOutputAttributes();
if(!hasStarted){
hasStarted=true;
numericIndices= new LinkedList();
//Initialize numericAttributesIndex
for (int i = 0; i < instance.numInputAttributes(); i++)
if(instance.inputAttribute(i).isNumeric())
numericIndices.add(i);
int numInputs=numericIndices.size();
inAttrSum=new double[numInputs];
inAttrSquaredSum=new double[numInputs];
outAttrSum=new double[numOutputs];
outAttrSquaredSum=new double[numOutputs];
layer1Weights=new double[numInputs+1][numOutputs];
layer2Weights=new double[numOutputs+1][numOutputs];
/*
* Initialize first layer randomly uniform between -1 and 1
* Initialize second layer such that the weights between
* correspondent outputs are 1 and the remaining are 0
*/
for (int j=0; j it=numericIndices.iterator();
for (int i=0; i it=numericIndices.iterator();
int ct=0;
while(it.hasNext()){
double value=instance.valueInputAttribute(it.next());
inAttrSum[ct]+=value*w;
inAttrSquaredSum[ct]+=value*value*w;
ct++;
}
//Update output statistics
for(int i=0; i(numInputs)){
for(int i=0; i<(numInputs+1); i++)
layer1Weights[i][j]/=sumLayer;
}
}
if(!skipStackingOption.isSet()){
//update weights
//2nd Layer
double learningRate2ndLayer=learningRatio2ndLayerOption.getValue();
for (int j=0; j(numOutputs)){
for(int i=0; i<(numOutputs+1); i++)
layer2Weights[i][j]/=sumLayer;
}
}
}
}
@Override
public Prediction getPredictionForInstance(MultiLabelInstance inst) {
Prediction pred=null;
if(hasStarted)
{
int numOutputs=outAttrSum.length;
pred=new MultiLabelPrediction(numOutputs);
double [] normInputs=getNormalizedInput(inst);
double [] firstLayerOutput=predict1stLayer(normInputs);
double [] denormalizedOutput=null;
if(!skipStackingOption.isSet()){
double [] secondLayerOutput=predict2ndLayer(firstLayerOutput);
denormalizedOutput=getDenormalizedOutput(secondLayerOutput);
}
else
denormalizedOutput=getDenormalizedOutput(firstLayerOutput);
for(int i=0; i it=numericIndices.iterator();
int i=0;
while(it.hasNext()){
double mean=inAttrSum[i]/count;
double std=Utils.computeSD(inAttrSquaredSum[i], inAttrSum[i], count);
normalizedInput[i]=instance.valueInputAttribute(it.next())-mean;
if (std > SD_THRESHOLD)
normalizedInput[i]/=std;
i++;
}
return normalizedInput;
}
protected double [] getNormalizedOutput(MultiLabelInstance instance) {
int numOutputs=instance.numOutputAttributes();
double [] normalizedOutput=new double[numOutputs];
for(int i=0; i SD_THRESHOLD)
normalizedOutput[i]/=std;
}
return normalizedOutput;
}
protected double [] getDenormalizedOutput(double [] normOutputs) {
int numOutputs=normOutputs.length;
double [] denormalizedOutput=new double[numOutputs];
for(int i=0; i SD_THRESHOLD)
denormalizedOutput[i]=normOutputs[i]*std+mean;
else
denormalizedOutput[i]=normOutputs[i]+mean;
}
return denormalizedOutput;
}
private double[] predict1stLayer(double [] normInputs) {
int numInputs=numericIndices.size();
int numOutputs=this.outAttrSum.length;
double [] firstLayerOutput=new double[numOutputs];
for (int j=0; j
© 2015 - 2025 Weber Informatics LLC | Privacy Policy