![JAR search and dependency download from the Maven repository](/logo.png)
moa.core.Measurement Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
The newest version!
/*
* Measurement.java
* Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
* @author Richard Kirkby ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.core;
import java.util.ArrayList;
import java.util.List;
import moa.AbstractMOAObject;
/**
* Class for storing an evaluation measurement.
*
* @author Richard Kirkby ([email protected])
* @version $Revision: 7 $
*/
public class Measurement extends AbstractMOAObject {
private static final long serialVersionUID = 1L;
protected String name;
protected double value;
public Measurement(String name, double value) {
this.name = name;
this.value = value;
}
public String getName() {
return this.name;
}
public double getValue() {
return this.value;
}
public static Measurement getMeasurementNamed(String name,
Measurement[] measurements) {
for (Measurement measurement : measurements) {
if (name.equals(measurement.getName())) {
return measurement;
}
}
return null;
}
public static void getMeasurementsDescription(Measurement[] measurements,
StringBuilder out, int indent) {
if (measurements.length > 0) {
StringUtils.appendIndented(out, indent, measurements[0].toString());
for (int i = 1; i < measurements.length; i++) {
StringUtils.appendNewlineIndented(out, indent, measurements[i].toString());
}
}
}
public static Measurement[] averageMeasurements(Measurement[][] toAverage) {
List measurementNames = new ArrayList();
for (Measurement[] measurements : toAverage) {
for (Measurement measurement : measurements) {
if (measurementNames.indexOf(measurement.getName()) < 0) {
measurementNames.add(measurement.getName());
}
}
}
GaussianEstimator[] estimators = new GaussianEstimator[measurementNames.size()];
for (int i = 0; i < estimators.length; i++) {
estimators[i] = new GaussianEstimator();
}
for (Measurement[] measurements : toAverage) {
for (Measurement measurement : measurements) {
estimators[measurementNames.indexOf(measurement.getName())].addObservation(measurement.getValue(), 1.0);
}
}
List averagedMeasurements = new ArrayList();
for (int i = 0; i < measurementNames.size(); i++) {
String mName = measurementNames.get(i);
GaussianEstimator mEstimator = estimators[i];
if (mEstimator.getTotalWeightObserved() > 1.0) {
averagedMeasurements.add(new Measurement("[avg] " + mName, mEstimator.getMean()));
averagedMeasurements.add(new Measurement("[err] " + mName, mEstimator.getStdDev()));
}
else {
averagedMeasurements.add(new Measurement("[avg] " + mName, 0.0));
averagedMeasurements.add(new Measurement("[err] " + mName, 0.0));
}
}
return averagedMeasurements.toArray(new Measurement[averagedMeasurements.size()]);
}
@Override
public void getDescription(StringBuilder sb, int indent) {
sb.append(getName());
sb.append(" = ");
if (getValue()>.001) {
sb.append(StringUtils.doubleToString(getValue(),3));
} else {
sb.append(getValue());
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy