All Downloads are FREE. Search and download functionalities are using the official Maven repository.

moa.gui.visualization.RunVisualizer Maven / Gradle / Ivy

Go to download

Massive On-line Analysis is an environment for massive data mining. MOA provides a framework for data stream mining and includes tools for evaluation and a collection of machine learning algorithms. Related to the WEKA project, also written in Java, while scaling to more demanding problems.

The newest version!
/*
 *    RunVisualizer.java
 *    Copyright (C) 2010 RWTH Aachen University, Germany
 *    @author Jansen ([email protected])
 *
 *    Licensed under the Apache License, Version 2.0 (the "License");
 *    you may not use this file except in compliance with the License.
 *    You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 *
 *
 */

package moa.gui.visualization;

import java.awt.Color;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;

import moa.cluster.Cluster;
import moa.cluster.Clustering;
import moa.clusterers.AbstractClusterer;
import moa.clusterers.ClusterGenerator;
import moa.evaluation.MeasureCollection;
import moa.gui.TextViewerPanel;
import moa.gui.clustertab.ClusteringSetupTab;
import moa.gui.clustertab.ClusteringVisualEvalPanel;
import moa.gui.clustertab.ClusteringVisualTab;
import moa.streams.clustering.ClusterEvent;
import com.yahoo.labs.samoa.instances.Instance;
import moa.gui.clustertab.ClusteringSetupTab;
import moa.streams.clustering.ClusterEventListener;
import moa.streams.clustering.ClusteringStream;
import moa.streams.clustering.RandomRBFGeneratorEvents;
import com.yahoo.labs.samoa.instances.Attribute;
import com.yahoo.labs.samoa.instances.DenseInstance;
import moa.core.FastVector;
import com.yahoo.labs.samoa.instances.Instances;

public class RunVisualizer implements Runnable, ActionListener, ClusterEventListener{


    /** the pause interval, being read from the gui at startup */
    public static final int initialPauseInterval = 5000;

    /** factor to control the speed */
    private int m_wait_frequency = 1000;

    /** after how many instances do we repaint the streampanel?
     *  the GUI becomes very slow with small values
     * */
    private int m_redrawInterval = 100;


    /* flags to control the run behavior */
    private static boolean work;
    private boolean stop = false;

    /* total amount of processed instances */
    private static int timestamp;
    private static int lastPauseTimestamp;

    /* amount of instances to process in one step*/
    private int m_processFrequency;

    /* the stream that delivers the instances */
    private final ClusteringStream m_stream0;

    /* amount of relevant instances; older instances will be dropped;
       creates the 'sliding window' over the stream;
       is strongly connected to the decay rate and decay threshold*/
    private int m_stream0_decayHorizon;

    /* the decay threshold defines the minimum weight of an instance to be relevant */
    private double m_stream0_decay_threshold;

    /* the decay rate of the stream, often reffered to as lambda;
       is being calculated from the horizion and the threshold
       as these are more intuitive to define */
    private double m_stream0_decay_rate;


    /* the clusterer */
    private AbstractClusterer m_clusterer0;
    private AbstractClusterer m_clusterer1;

    /* the measure collections contain all the measures */
    private MeasureCollection[] m_measures0 = null;
    private MeasureCollection[] m_measures1 = null;

    /* left and right stream panel that datapoints and clusterings will be drawn to */
    private StreamPanel m_streampanel0;
    private StreamPanel m_streampanel1;

    /* panel that shows the evaluation results */
    private ClusteringVisualEvalPanel m_evalPanel;

    /* panel to hold the graph */
    private GraphCanvas m_graphcanvas;

    /* reference to the visual panel */
    private ClusteringVisualTab m_visualPanel;

    /* all possible clusterings */
    //not pretty to have all the clusterings, but otherwise we can't just redraw clusterings
    private Clustering gtClustering0 = null;
    private Clustering gtClustering1 = null;
    private Clustering macro0 = null;
    private Clustering macro1 = null;
    private Clustering micro0 = null;
    private Clustering micro1 = null;

    /* holds all the events that have happend, if the stream supports events */
    private ArrayList clusterEvents;

    /* reference to the log panel */
    private final TextViewerPanel m_logPanel;

    public RunVisualizer(ClusteringVisualTab visualPanel, ClusteringSetupTab clusteringSetupTab){
        m_visualPanel = visualPanel;
        m_streampanel0 = visualPanel.getLeftStreamPanel();
        m_streampanel1 = visualPanel.getRightStreamPanel();
        m_graphcanvas = visualPanel.getGraphCanvas();
        m_evalPanel = visualPanel.getEvalPanel();
        m_logPanel = clusteringSetupTab.getLogPanel();

        m_stream0 = clusteringSetupTab.getStream0();
        m_stream0_decayHorizon = m_stream0.getDecayHorizon();
        m_stream0_decay_threshold = m_stream0.getDecayThreshold();
        m_stream0_decay_rate = (Math.log(1.0/m_stream0_decay_threshold)/Math.log(2)/m_stream0_decayHorizon);

        timestamp = 0;
        lastPauseTimestamp = 0;
        work = true;


        if(m_stream0 instanceof RandomRBFGeneratorEvents){
            ((RandomRBFGeneratorEvents)m_stream0).addClusterChangeListener(this);
            clusterEvents = new ArrayList();
            m_graphcanvas.setClusterEventsList(clusterEvents);
        }
        m_stream0.prepareForUse();

        m_clusterer0 = clusteringSetupTab.getClusterer0();
        m_clusterer0.prepareForUse();


        m_clusterer1 = clusteringSetupTab.getClusterer1();
        if(m_clusterer1!=null){
            m_clusterer1.prepareForUse();
        }

        m_measures0 = clusteringSetupTab.getMeasures();
        m_measures1 = clusteringSetupTab.getMeasures();


        /* TODO this option needs to move from the stream panel to the setup panel */
        m_processFrequency = m_stream0.getEvaluationFrequency();

        //get those values from the generator
        int dims = m_stream0.numAttsOption.getValue();
        visualPanel.setDimensionComobBoxes(dims);
        visualPanel.setPauseInterval(initialPauseInterval);

        m_evalPanel.setMeasures(m_measures0, m_measures1, this);
        m_graphcanvas.setGraph(m_measures0[0], m_measures1[0],0,m_processFrequency);
    }


    public void run() {
            runVisual();
    }


    public void runVisual() {
        int processCounter = 0;
        int speedCounter = 0;
        LinkedList pointBuffer0 = new LinkedList();
        LinkedList pointBuffer1 = new LinkedList();
        ArrayList pointarray0 = null;
        ArrayList pointarray1 = null;


        while(work || processCounter!=0){
            if (m_stream0.hasMoreInstances()) {
                timestamp++;
                speedCounter++;
                processCounter++;
                if(timestamp%100 == 0){
                    m_visualPanel.setProcessedPointsCounter(timestamp);
                }

                Instance next0 = m_stream0.nextInstance().getData();
                DataPoint point0 = new DataPoint(next0,timestamp);

                pointBuffer0.add(point0);
                while(pointBuffer0.size() > m_stream0_decayHorizon){
                    pointBuffer0.removeFirst();
                }

                DataPoint point1 = null;
                if(m_clusterer1!=null){
                	point1 = new DataPoint(next0,timestamp);
                	pointBuffer1.add(point1);
	                while(pointBuffer1.size() > m_stream0_decayHorizon){
	                    pointBuffer1.removeFirst();
	                }
                }

                if(m_visualPanel.isEnabledDrawPoints()){
                    m_streampanel0.drawPoint(point0);
                    if(m_clusterer1!=null)
                        m_streampanel1.drawPoint(point1);
                    if(processCounter%m_redrawInterval==0){
                        m_streampanel0.applyDrawDecay(m_stream0_decayHorizon/(float)(m_redrawInterval));
                        if(m_clusterer1!=null)
                            m_streampanel1.applyDrawDecay(m_stream0_decayHorizon/(float)(m_redrawInterval));
                    }
                }

                Instance traininst0 = new DenseInstance(point0);
                if(m_clusterer0.keepClassLabel())
                    traininst0.setDataset(point0.dataset());
                else
                    traininst0.deleteAttributeAt(point0.classIndex());
                m_clusterer0.trainOnInstanceImpl(traininst0);


                if(m_clusterer1!=null){
                    Instance traininst1 = new DenseInstance(point1);
                    if(m_clusterer1.keepClassLabel())
                        traininst1.setDataset(point1.dataset());
                    else
                        traininst1.deleteAttributeAt(point1.classIndex());
                    m_clusterer1.trainOnInstanceImpl(traininst1);
                }

                if (processCounter >= m_processFrequency) {
                    processCounter = 0;
                    for(DataPoint p:pointBuffer0)
                        p.updateWeight(timestamp, m_stream0_decay_rate);

                    pointarray0 = new ArrayList(pointBuffer0);

                    if(m_clusterer1!=null){
                        for(DataPoint p:pointBuffer1)
                            p.updateWeight(timestamp, m_stream0_decay_rate);

                		pointarray1 = new ArrayList(pointBuffer1);
                    }


                    processClusterings(pointarray0, pointarray1);

                    int pauseInterval = m_visualPanel.getPauseInterval();
                    if(pauseInterval!=0 && lastPauseTimestamp+pauseInterval<=timestamp){
                        m_visualPanel.toggleVisualizer(true);
                    }

                }
            } else {
                System.out.println("DONE");
                return;
            }
            if(speedCounter > m_wait_frequency*30 && m_wait_frequency < 15){
                try {
                    synchronized (this) {
                        if(m_wait_frequency == 0)
                            wait(50);
                        else
                            wait(1);
                    }
                } catch (InterruptedException ex) {

                }
                speedCounter = 0;
            }
        }
        if(!stop){
            m_streampanel0.drawPointPanels(pointarray0, timestamp, m_stream0_decay_rate, m_stream0_decay_threshold);
            if(m_clusterer1!=null)
                m_streampanel1.drawPointPanels(pointarray1, timestamp, m_stream0_decay_rate, m_stream0_decay_threshold);
            work_pause();
        }
    }

    private void processClusterings(ArrayList points0, ArrayList points1){
        gtClustering0 = new Clustering(points0);
        gtClustering1 = null;
				if(m_clusterer1!=null){
						gtClustering1 = new Clustering(points1);
				}

        Clustering evalClustering0 = null;
        Clustering evalClustering1 = null;

        //special case for ClusterGenerator
        if(gtClustering0!= null){
            if(m_clusterer0 instanceof ClusterGenerator)
                ((ClusterGenerator)m_clusterer0).setSourceClustering(gtClustering0);
            if(m_clusterer1 instanceof ClusterGenerator)
                ((ClusterGenerator)m_clusterer1).setSourceClustering(gtClustering1);
        }

        macro0 = m_clusterer0.getClusteringResult();
        evalClustering0 = macro0;


        //TODO: should we check if micro/macro is being drawn or needed for evaluation and skip otherwise to speed things up?
        if(m_clusterer0.implementsMicroClusterer()){
            micro0 = m_clusterer0.getMicroClusteringResult();
            if(macro0 == null && micro0 != null){
                //TODO: we need a Macro Clusterer Interface and the option for kmeans to use the non optimal centers
                macro0 = moa.clusterers.KMeans.gaussianMeans(gtClustering0, micro0);
            }
            if(m_clusterer0.evaluateMicroClusteringOption.isSet())
                evalClustering0 = micro0;
            else
                evalClustering0 = macro0;
        }

        if(m_clusterer1!=null){
            macro1 = m_clusterer1.getClusteringResult();
            evalClustering1 = macro1;
            if(m_clusterer1.implementsMicroClusterer()){
                micro1 = m_clusterer1.getMicroClusteringResult();
                if(macro1 == null && micro1 != null){
                        macro1 = moa.clusterers.KMeans.gaussianMeans(gtClustering1, micro1);
                }
                if(m_clusterer1.evaluateMicroClusteringOption.isSet())
                    evalClustering1 = micro1;
                else
                    evalClustering1 = macro1;
            }
        }

        evaluateClustering(evalClustering0, gtClustering0, points0, true);
    		evaluateClustering(evalClustering1, gtClustering1, points1, false);

        drawClusterings(points0, points1);
    }

    private void evaluateClustering(Clustering found_clustering, Clustering trueClustering, ArrayList points, boolean algorithm0){
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < m_measures0.length; i++) {
            if(algorithm0){
                if(found_clustering!=null && found_clustering.size() > 0){
                    try {
                        double msec = m_measures0[i].evaluateClusteringPerformance(found_clustering, trueClustering, points);
                        sb.append(m_measures0[i].getClass().getSimpleName()+" took "+msec+"ms (Mean:"+m_measures0[i].getMeanRunningTime()+")");
                        sb.append("\n");

                    } catch (Exception ex) { ex.printStackTrace(); }
                }
                else{
                    for(int j = 0; j < m_measures0[i].getNumMeasures(); j++){
                        m_measures0[i].addEmptyValue(j);
                    }
                }
            }
            else{
                if(m_clusterer1!=null && found_clustering!=null && found_clustering.size() > 0){
                    try {
                        double msec = m_measures1[i].evaluateClusteringPerformance(found_clustering, trueClustering, points);
                        sb.append(m_measures1[i].getClass().getSimpleName()+" took "+msec+"ms (Mean:"+m_measures1[i].getMeanRunningTime()+")");
                        sb.append("\n");
                    }
                    catch (Exception ex) { ex.printStackTrace(); }
                }
                else{
                    for(int j = 0; j < m_measures1[i].getNumMeasures(); j++){
                        m_measures1[i].addEmptyValue(j);
                    }
                }
            }
        }
        m_logPanel.setText(sb.toString());
        m_evalPanel.update();
        m_graphcanvas.updateCanvas();
    }

    public void drawClusterings(List points0, List points1){
        if(macro0!= null && macro0.size() > 0)
                m_streampanel0.drawMacroClustering(macro0, points0, Color.RED);
        if(micro0!= null && micro0.size() > 0)
                m_streampanel0.drawMicroClustering(micro0, points0, Color.GREEN);
        if(gtClustering0!= null && gtClustering0.size() > 0)
            m_streampanel0.drawGTClustering(gtClustering0, points0, Color.BLACK);

        if(m_clusterer1!=null){
            if(macro1!= null && macro1.size() > 0)
                    m_streampanel1.drawMacroClustering(macro1, points1, Color.BLUE);
            if(micro1!= null && micro1.size() > 0)
                    m_streampanel1.drawMicroClustering(micro1, points1, Color.GREEN);
            if(gtClustering1!= null && gtClustering1.size() > 0)
                m_streampanel1.drawGTClustering(gtClustering1, points1, Color.BLACK);
        }
    }

    public void redraw(){
        m_streampanel0.repaint();
        m_streampanel1.repaint();
    }


    public static int getCurrentTimestamp(){
        return timestamp;
    }

    private void work_pause(){
        while(!work && !stop){
            try {
                synchronized (this) {
                    wait(1000);
                }
            } catch (InterruptedException ex) {

            }
       }
       run();
    }

    public static void pause(){
        work = false;
        lastPauseTimestamp = timestamp;
    }

    public static void resume(){
        work = true;
    }

    public void stop(){
        work = false;
        stop = true;
    }

    public void setSpeed(int speed) {
        m_wait_frequency = speed;
    }

    public void actionPerformed(ActionEvent e) {
        //reacte on graph selection and find out which measure was selected
        int selected = Integer.parseInt(e.getActionCommand());
        int counter = selected;
        int m_select = 0;
        int m_select_offset = 0;
        boolean found = false;
        for (int i = 0; i < m_measures0.length; i++) {
            for (int j = 0; j < m_measures0[i].getNumMeasures(); j++) {
                if(m_measures0[i].isEnabled(j)){
                	counter--;
                    if(counter<0){
                        m_select = i;
                        m_select_offset = j;
                        found = true;
                        break;
                    }
                }
            }
            if(found) break;
        }
        m_graphcanvas.setGraph(m_measures0[m_select], m_measures1[m_select],m_select_offset,m_processFrequency);
    }

    public void setPointLayerVisibility(boolean selected) {
        m_streampanel0.setPointVisibility(selected);
        m_streampanel1.setPointVisibility(selected);
    }
    public void setMicroLayerVisibility(boolean selected) {
        m_streampanel0.setMicroLayerVisibility(selected);
        m_streampanel1.setMicroLayerVisibility(selected);
    }
    public void setMacroVisibility(boolean selected) {
        m_streampanel0.setMacroLayerVisibility(selected);
        m_streampanel1.setMacroLayerVisibility(selected);
    }
    public void setGroundTruthVisibility(boolean selected) {
        m_streampanel0.setGroundTruthLayerVisibility(selected);
        m_streampanel1.setGroundTruthLayerVisibility(selected);
    }

    public void changeCluster(ClusterEvent e) {
        if(clusterEvents!=null) clusterEvents.add(e);
        System.out.println(e.getType()+": "+e.getMessage());
    }



    public void exportCSV(String filepath) {
        PrintWriter out = null;
        try {
            if(!filepath.endsWith(".csv"))
                filepath+=".csv";
            out = new PrintWriter(new BufferedWriter(new FileWriter(filepath)));
            String del = ";";

            Iterator eventIt = null;
            ClusterEvent event = null;
            if(clusterEvents!=null && clusterEvents.size() > 0){
                eventIt = clusterEvents.iterator();
                event = eventIt.next();
            }

            //raw data
            MeasureCollection measurecol[][] = new MeasureCollection[2][];
            measurecol[0] = m_measures0;
            measurecol[1] = m_measures1;
            int numValues = 0;
            //header
            out.write("Nr"+del);
            out.write("Event"+del);
            for (int m = 0; m < 2; m++) {
                for (int i = 0; i < measurecol[m].length; i++) {
                    for (int j = 0; j < measurecol[m][i].getNumMeasures(); j++) {
                        if(measurecol[m][i].isEnabled(j)){
                            out.write(m+"-"+measurecol[m][i].getName(j)+del);
                            numValues = measurecol[m][i].getNumberOfValues(j);
                        }
                    }
                }
            }
            out.write("\n");


            //rows
            for (int v = 0; v < numValues; v++){
                //Nr
                out.write(v+del);

                //events
                if(event!=null && event.getTimestamp()<=m_stream0_decayHorizon*v){
                    out.write(event.getType()+del);
                    if(eventIt!= null && eventIt.hasNext()){
                        event=eventIt.next();
                    }
                    else
                        event = null;
                }
                else
                    out.write(del);

                //values
                for (int m = 0; m < 2; m++) {
                    for (int i = 0; i < measurecol[m].length; i++) {
                        for (int j = 0; j < measurecol[m][i].getNumMeasures(); j++) {
                            if(measurecol[m][i].isEnabled(j)){
                            		double value = measurecol[m][i].getValue(j, v);
                            		if(Double.isNaN(value))
                            			out.write(del);
                            		else
                            			out.write(value+del);
                            }
                        }
                    }
                }
                out.write("\n");
            }
            out.close();
        } catch (IOException ex) {
            Logger.getLogger(RunVisualizer.class.getName()).log(Level.SEVERE, null, ex);
        } finally {
            out.close();
        }
    }

    public void weka() {
    	try{
    		Class.forName("weka.gui.Logger");
    	}
    	catch (Exception e){
    		m_logPanel.addText("Please add weka.jar to the classpath to use the Weka explorer.");
    		return;
    	}


        Clustering wekaClustering;
        if(m_clusterer0.implementsMicroClusterer() && m_clusterer0.evaluateMicroClusteringOption.isSet())
            wekaClustering = micro0;
        else
            wekaClustering = macro0;

        if(wekaClustering == null || wekaClustering.size()==0){
            m_logPanel.addText("Empty Clustering");
            return;
        }

        int dims = wekaClustering.get(0).getCenter().length;
        FastVector attributes = new FastVector();
        for(int i = 0; i < dims; i++)
                attributes.addElement( new Attribute("att" + i) );

        Instances instances = new Instances("trainset",attributes,0);

        for(int c = 0; c < wekaClustering.size(); c++){
            Cluster cluster = wekaClustering.get(c);
            Instance inst = new DenseInstance(cluster.getWeight(), cluster.getCenter());
            inst.setDataset(instances);
            instances.add(inst);
        }

        WekaExplorer explorer = new WekaExplorer(instances);
    }


}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy