All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.ADTree Maven / Gradle / Ivy

Go to download

Binary-class and multi-class alternating decision trees. For more information see: Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999. Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, Mark Hall: Multiclass alternating decision trees. In: ECML, 161-172, 2001.

There is a newer version: 1.0.5
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    ADTree.java
 *    Copyright (C) 2001 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import weka.classifiers.Classifier;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.IterativeClassifier;
import weka.classifiers.trees.adtree.PredictionNode;
import weka.classifiers.trees.adtree.ReferenceInstances;
import weka.classifiers.trees.adtree.Splitter;
import weka.classifiers.trees.adtree.TwoWayNominalSplit;
import weka.classifiers.trees.adtree.TwoWayNumericSplit;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Drawable;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.SerializedObject;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

/**
 
 * Class for generating an alternating decision tree. The basic algorithm is based on:
*
* Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 1999.
*
* This version currently only supports two-class problems. The number of boosting iterations needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic search methods have been introduced to speed learning. *

* * BibTeX: *

 * @inproceedings{Freund1999,
 *    address = {Bled, Slovenia},
 *    author = {Freund, Y. and Mason, L.},
 *    booktitle = {Proceeding of the Sixteenth International Conference on Machine Learning},
 *    pages = {124-133},
 *    title = {The alternating decision tree learning algorithm},
 *    year = {1999}
 * }
 * 
*

* * Valid options are:

* *

 -B <number of boosting iterations>
 *  Number of boosting iterations.
 *  (Default = 10)
* *
 -E <-3|-2|-1|>=0>
 *  Expand nodes: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk
 *  (Default = -3)
* *
 -D
 *  Save the instance data with the model
* * * @author Richard Kirkby ([email protected]) * @author Bernhard Pfahringer ([email protected]) * @version $Revision: 8109 $ */ public class ADTree extends AbstractClassifier implements OptionHandler, Drawable, AdditionalMeasureProducer, WeightedInstancesHandler, IterativeClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -1532264837167690683L; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for generating an alternating decision tree. The basic " + "algorithm is based on:\n\n" + getTechnicalInformation().toString() + "\n\n" + "This version currently only supports two-class problems. The number of boosting " + "iterations needs to be manually tuned to suit the dataset and the desired " + "complexity/accuracy tradeoff. Induction of the trees has been optimized, and heuristic " + "search methods have been introduced to speed learning."; } /** search mode: Expand all paths */ public static final int SEARCHPATH_ALL = 0; /** search mode: Expand the heaviest path */ public static final int SEARCHPATH_HEAVIEST = 1; /** search mode: Expand the best z-pure path */ public static final int SEARCHPATH_ZPURE = 2; /** search mode: Expand a random path */ public static final int SEARCHPATH_RANDOM = 3; /** The search modes */ public static final Tag [] TAGS_SEARCHPATH = { new Tag(SEARCHPATH_ALL, "Expand all paths"), new Tag(SEARCHPATH_HEAVIEST, "Expand the heaviest path"), new Tag(SEARCHPATH_ZPURE, "Expand the best z-pure path"), new Tag(SEARCHPATH_RANDOM, "Expand a random path") }; /** The instances used to train the tree */ protected Instances m_trainInstances; /** The root of the tree */ protected PredictionNode m_root = null; /** The random number generator - used for the random search heuristic */ protected Random m_random = null; /** The number of the last splitter added to the tree */ protected int m_lastAddedSplitNum = 0; /** An array containing the inidices to the numeric attributes in the data */ protected int[] m_numericAttIndices; /** An array containing the inidices to the nominal attributes in the data */ protected int[] m_nominalAttIndices; /** The total weight of the instances - used to speed Z calculations */ protected double m_trainTotalWeight; /** The training instances with positive class - referencing the training dataset */ protected ReferenceInstances m_posTrainInstances; /** The training instances with negative class - referencing the training dataset */ protected ReferenceInstances m_negTrainInstances; /** The best node to insert under, as found so far by the latest search */ protected PredictionNode m_search_bestInsertionNode; /** The best splitter to insert, as found so far by the latest search */ protected Splitter m_search_bestSplitter; /** The smallest Z value found so far by the latest search */ protected double m_search_smallestZ; /** The positive instances that apply to the best path found so far */ protected Instances m_search_bestPathPosInstances; /** The negative instances that apply to the best path found so far */ protected Instances m_search_bestPathNegInstances; /** Statistics - the number of prediction nodes investigated during search */ protected int m_nodesExpanded = 0; /** Statistics - the number of instances processed during search */ protected int m_examplesCounted = 0; /** Option - the number of boosting iterations o perform */ protected int m_boostingIterations = 10; /** Option - the search mode */ protected int m_searchPath = 0; /** Option - the seed to use for a random search */ protected int m_randomSeed = 0; /** Option - whether the tree should remember the instance data */ protected boolean m_saveInstanceData = false; /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Freund, Y. and Mason, L."); result.setValue(Field.YEAR, "1999"); result.setValue(Field.TITLE, "The alternating decision tree learning algorithm"); result.setValue(Field.BOOKTITLE, "Proceeding of the Sixteenth International Conference on Machine Learning"); result.setValue(Field.ADDRESS, "Bled, Slovenia"); result.setValue(Field.PAGES, "124-133"); return result; } /** * Sets up the tree ready to be trained, using two-class optimized method. * * @param instances the instances to train the tree with * @exception Exception if training data is unsuitable */ public void initClassifier(Instances instances) throws Exception { // clear stats m_nodesExpanded = 0; m_examplesCounted = 0; m_lastAddedSplitNum = 0; // prepare the random generator m_random = new Random(m_randomSeed); // create training set m_trainInstances = new Instances(instances); // create positive/negative subsets m_posTrainInstances = new ReferenceInstances(m_trainInstances, m_trainInstances.numInstances()); m_negTrainInstances = new ReferenceInstances(m_trainInstances, m_trainInstances.numInstances()); for (Enumeration e = m_trainInstances.enumerateInstances(); e.hasMoreElements(); ) { Instance inst = (Instance) e.nextElement(); if ((int) inst.classValue() == 0) m_negTrainInstances.addReference(inst); // belongs in negative class else m_posTrainInstances.addReference(inst); // belongs in positive class } m_posTrainInstances.compactify(); m_negTrainInstances.compactify(); // create the root prediction node double rootPredictionValue = calcPredictionValue(m_posTrainInstances, m_negTrainInstances); m_root = new PredictionNode(rootPredictionValue); // pre-adjust weights updateWeights(m_posTrainInstances, m_negTrainInstances, rootPredictionValue); // pre-calculate what we can generateAttributeIndicesSingle(); } /** * Performs one iteration. * * @param iteration the index of the current iteration (0-based) * @exception Exception if this iteration fails */ public void next(int iteration) throws Exception { boost(); } /** * Performs a single boosting iteration, using two-class optimized method. * Will add a new splitter node and two prediction nodes to the tree * (unless merging takes place). * * @exception Exception if try to boost without setting up tree first or there are no * instances to train with */ public void boost() throws Exception { if (m_trainInstances == null || m_trainInstances.numInstances() == 0) throw new Exception("Trying to boost with no training data"); // perform the search searchForBestTestSingle(); if (m_search_bestSplitter == null) return; // handle empty instances // create the new nodes for the tree, updating the weights for (int i=0; i<2; i++) { Instances posInstances = m_search_bestSplitter.instancesDownBranch(i, m_search_bestPathPosInstances); Instances negInstances = m_search_bestSplitter.instancesDownBranch(i, m_search_bestPathNegInstances); double predictionValue = calcPredictionValue(posInstances, negInstances); PredictionNode newPredictor = new PredictionNode(predictionValue); updateWeights(posInstances, negInstances, predictionValue); m_search_bestSplitter.setChildForBranch(i, newPredictor); } // insert the new nodes m_search_bestInsertionNode.addChild((Splitter) m_search_bestSplitter, this); // free memory m_search_bestPathPosInstances = null; m_search_bestPathNegInstances = null; m_search_bestSplitter = null; } /** * Generates the m_nominalAttIndices and m_numericAttIndices arrays to index * the respective attribute types in the training data. * */ private void generateAttributeIndicesSingle() { // insert indices into vectors FastVector nominalIndices = new FastVector(); FastVector numericIndices = new FastVector(); for (int i=0; i= m_search_smallestZ) return; // keep stats m_nodesExpanded++; m_examplesCounted += posInstances.numInstances() + negInstances.numInstances(); // evaluate static splitters (nominal) for (int i=0; i 0) { // merge the two sets of instances into one Instances allInstances = new Instances(posInstances); for (Enumeration e = negInstances.enumerateInstances(); e.hasMoreElements(); ) allInstances.add((Instance) e.nextElement()); // use method of finding the optimal Z split-point for (int i=0; i largestWeight) { heaviestSplit = split; heaviestBranch = i; largestWeight = weight; } } } if (heaviestSplit != null) searchForBestTestSingle(heaviestSplit.getChildForBranch(heaviestBranch), heaviestSplit.instancesDownBranch(heaviestBranch, posInstances), heaviestSplit.instancesDownBranch(heaviestBranch, negInstances)); } /** * Continues single (two-class optimized) search by investigating only the path * with the best Z-pure value at each branch. * * @param currentNode the root of the subtree to be searched * @param posInstances the positive-class instances that apply at this node * @param negInstances the negative-class instances that apply at this node * @exception Exception if search fails */ private void goDownZpurePathSingle(PredictionNode currentNode, Instances posInstances, Instances negInstances) throws Exception { double lowestZpure = m_search_smallestZ; // do z-pure cutoff PredictionNode bestPath = null; Instances bestPosSplit = null, bestNegSplit = null; // search for branch with lowest Z-pure for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { Splitter split = (Splitter) e.nextElement(); for (int i=0; i= 0) currentValue = predictionValueForInstance(inst, split.getChildForBranch(branch), currentValue); } return currentValue; } /** * Returns a description of the classifier. * * @return a string containing a description of the classifier */ public String toString() { if (m_root == null) return ("ADTree not built yet"); else { return ("Alternating decision tree:\n\n" + toString(m_root, 1) + "\nLegend: " + legend() + "\nTree size (total number of nodes): " + numOfAllNodes(m_root) + "\nLeaves (number of predictor nodes): " + numOfPredictionNodes(m_root) ); } } /** * Traverses the tree, forming a string that describes it. * * @param currentNode the current node under investigation * @param level the current level in the tree * @return the string describing the subtree */ protected String toString(PredictionNode currentNode, int level) { StringBuffer text = new StringBuffer(); text.append(": " + Utils.doubleToString(currentNode.getValue(),3)); for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { Splitter split = (Splitter) e.nextElement(); for (int j=0; j 0) text.append(" data=\n" + instances + "\n,\n"); text.append("]\n"); for (Enumeration e = currentNode.children(); e.hasMoreElements(); ) { Splitter split = (Splitter) e.nextElement(); text.append("S" + splitOrder + "P" + predOrder + "->" + "S" + split.orderAdded + " [style=dotted]\n"); text.append("S" + split.orderAdded + " [label=\"" + split.orderAdded + ": " + split.attributeString(m_trainInstances) + "\"]\n"); for (int i=0; i" + "S" + split.orderAdded + "P" + i + " [label=\"" + split.comparisonString(i, m_trainInstances) + "\"]\n"); graphTraverse(child, text, split.orderAdded, i, split.instancesDownBranch(i, instances)); } } } } /** * Returns the legend of the tree, describing how results are to be interpreted. * * @return a string containing the legend of the classifier */ public String legend() { Attribute classAttribute = null; if (m_trainInstances == null) return ""; try {classAttribute = m_trainInstances.classAttribute();} catch (Exception x){}; return ("-ve = " + classAttribute.value(0) + ", +ve = " + classAttribute.value(1)); } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numOfBoostingIterationsTipText() { return "Sets the number of boosting iterations to perform. You will need to manually " + "tune this parameter to suit the dataset and the desired complexity/accuracy " + "tradeoff. More boosting iterations will result in larger (potentially more " + " accurate) trees, but will make learning slower. Each iteration will add 3 nodes " + "(1 split + 2 prediction) to the tree unless merging occurs."; } /** * Gets the number of boosting iterations. * * @return the number of boosting iterations */ public int getNumOfBoostingIterations() { return m_boostingIterations; } /** * Sets the number of boosting iterations. * * @param b the number of boosting iterations to use */ public void setNumOfBoostingIterations(int b) { m_boostingIterations = b; } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String searchPathTipText() { return "Sets the type of search to perform when building the tree. The default option" + " (Expand all paths) will do an exhaustive search. The other search methods are" + " heuristic, so they are not guaranteed to find an optimal solution but they are" + " much faster. Expand the heaviest path: searches the path with the most heavily" + " weighted instances. Expand the best z-pure path: searches the path determined" + " by the best z-pure estimate. Expand a random path: the fastest method, simply" + " searches down a single random path on each iteration."; } /** * Gets the method of searching the tree for a new insertion. Will be one of * SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM. * * @return the tree searching mode */ public SelectedTag getSearchPath() { return new SelectedTag(m_searchPath, TAGS_SEARCHPATH); } /** * Sets the method of searching the tree for a new insertion. Will be one of * SEARCHPATH_ALL, SEARCHPATH_HEAVIEST, SEARCHPATH_ZPURE, SEARCHPATH_RANDOM. * * @param newMethod the new tree searching mode */ public void setSearchPath(SelectedTag newMethod) { if (newMethod.getTags() == TAGS_SEARCHPATH) { m_searchPath = newMethod.getSelectedTag().getID(); } } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String randomSeedTipText() { return "Sets the random seed to use for a random search."; } /** * Gets random seed for a random walk. * * @return the random seed */ public int getRandomSeed() { return m_randomSeed; } /** * Sets random seed for a random walk. * * @param seed the random seed */ public void setRandomSeed(int seed) { // the actual random object is created when the tree is initialized m_randomSeed = seed; } /** * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String saveInstanceDataTipText() { return "Sets whether the tree is to save instance data - the model will take up more" + " memory if it does. If enabled you will be able to visualize the instances at" + " the prediction nodes when visualizing the tree."; } /** * Gets whether the tree is to save instance data. * * @return the random seed */ public boolean getSaveInstanceData() { return m_saveInstanceData; } /** * Sets whether the tree is to save instance data. * * @param v true then the tree saves instance data */ public void setSaveInstanceData(boolean v) { m_saveInstanceData = v; } /** * Returns an enumeration describing the available options.. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option( "\tNumber of boosting iterations.\n" +"\t(Default = 10)", "B", 1,"-B ")); newVector.addElement(new Option( "\tExpand nodes: -3(all), -2(weight), -1(z_pure), " +">=0 seed for random walk\n" +"\t(Default = -3)", "E", 1,"-E <-3|-2|-1|>=0>")); newVector.addElement(new Option( "\tSave the instance data with the model", "D", 0,"-D")); return newVector.elements(); } /** * Parses a given list of options. Valid options are:

* * -B num
* Set the number of boosting iterations * (default 10)

* * -E num
* Set the nodes to expand: -3(all), -2(weight), -1(z_pure), >=0 seed for random walk * (default -3)

* * -D
* Save the instance data with the model

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String bString = Utils.getOption('B', options); if (bString.length() != 0) setNumOfBoostingIterations(Integer.parseInt(bString)); String eString = Utils.getOption('E', options); if (eString.length() != 0) { int value = Integer.parseInt(eString); if (value >= 0) { setSearchPath(new SelectedTag(SEARCHPATH_RANDOM, TAGS_SEARCHPATH)); setRandomSeed(value); } else setSearchPath(new SelectedTag(value + 3, TAGS_SEARCHPATH)); } setSaveInstanceData(Utils.getFlag('D', options)); Utils.checkForRemainingOptions(options); } /** * Gets the current settings of ADTree. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions() { String[] options = new String[6]; int current = 0; options[current++] = "-B"; options[current++] = "" + getNumOfBoostingIterations(); options[current++] = "-E"; options[current++] = "" + (m_searchPath == SEARCHPATH_RANDOM ? m_randomSeed : m_searchPath - 3); if (getSaveInstanceData()) options[current++] = "-D"; while (current < options.length) options[current++] = ""; return options; } /** * Calls measure function for tree size - the total number of nodes. * * @return the tree size */ public double measureTreeSize() { return numOfAllNodes(m_root); } /** * Calls measure function for leaf size - the number of prediction nodes. * * @return the leaf size */ public double measureNumLeaves() { return numOfPredictionNodes(m_root); } /** * Calls measure function for prediction leaf size - the number of * prediction nodes without children. * * @return the leaf size */ public double measureNumPredictionLeaves() { return numOfPredictionLeafNodes(m_root); } /** * Returns the number of nodes expanded. * * @return the number of nodes expanded during search */ public double measureNodesExpanded() { return m_nodesExpanded; } /** * Returns the number of examples "counted". * * @return the number of nodes processed during search */ public double measureExamplesProcessed() { return m_examplesCounted; } /** * Returns an enumeration of the additional measure names. * * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(4); newVector.addElement("measureTreeSize"); newVector.addElement("measureNumLeaves"); newVector.addElement("measureNumPredictionLeaves"); newVector.addElement("measureNodesExpanded"); newVector.addElement("measureExamplesProcessed"); return newVector.elements(); } /** * Returns the value of the named measure. * * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @exception IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.equalsIgnoreCase("measureTreeSize")) { return measureTreeSize(); } else if (additionalMeasureName.equalsIgnoreCase("measureNumLeaves")) { return measureNumLeaves(); } else if (additionalMeasureName.equalsIgnoreCase("measureNumPredictionLeaves")) { return measureNumPredictionLeaves(); } else if (additionalMeasureName.equalsIgnoreCase("measureNodesExpanded")) { return measureNodesExpanded(); } else if (additionalMeasureName.equalsIgnoreCase("measureExamplesProcessed")) { return measureExamplesProcessed(); } else {throw new IllegalArgumentException(additionalMeasureName + " not supported (ADTree)"); } } /** * Returns the total number of nodes in a tree. * * @param root the root of the tree being measured * @return tree size in number of splitter + prediction nodes */ protected int numOfAllNodes(PredictionNode root) { int numSoFar = 0; if (root != null) { numSoFar++; for (Enumeration e = root.children(); e.hasMoreElements(); ) { numSoFar++; Splitter split = (Splitter) e.nextElement(); for (int i=0; i 0) { for (Enumeration e = root.children(); e.hasMoreElements(); ) { Splitter split = (Splitter) e.nextElement(); for (int i=0; i





© 2015 - 2025 Weber Informatics LLC | Privacy Policy