All Downloads are FREE. Search and download functionalities are using the official Maven repository.

Download all versions of consistencySubsetEval JAR files with all dependencies


consistencySubsetEval from group nz.ac.waikato.cms.weka (version 1.0.4)

Evaluates the worth of a subset of attributes by the level of consistency in the class values when the training instances are projected onto the subset of attributes. The consistency of any subset can never be lower than that of the full set of attributes, hence the usual practice is to use this subset evaluator in conjunction with a Random or Exhaustive search which looks for the smallest subset with consistency equal to that of the full set of attributes. See: H. Liu, R. Setiono: A probabilistic approach to feature selection - A filter solution. In: 13th International Conference on Machine Learning, 319-327, 1996.

Group: nz.ac.waikato.cms.weka Artifact: consistencySubsetEval
Show documentation Show source 
Download consistencySubsetEval.jar (1.0.4)
 

1 downloads

consistencySubsetEval from group nz.ac.waikato.cms.weka (version 1.0.3)

Evaluates the worth of a subset of attributes by the level of consistency in the class values when the training instances are projected onto the subset of attributes. The consistency of any subset can never be lower than that of the full set of attributes, hence the usual practice is to use this subset evaluator in conjunction with a Random or Exhaustive search which looks for the smallest subset with consistency equal to that of the full set of attributes. See: H. Liu, R. Setiono: A probabilistic approach to feature selection - A filter solution. In: 13th International Conference on Machine Learning, 319-327, 1996.

Group: nz.ac.waikato.cms.weka Artifact: consistencySubsetEval
Show documentation Show source 
Download consistencySubsetEval.jar (1.0.3)
 

1 downloads

consistencySubsetEval from group nz.ac.waikato.cms.weka (version 1.0.2)

Evaluates the worth of a subset of attributes by the level of consistency in the class values when the training instances are projected onto the subset of attributes. The consistency of any subset can never be lower than that of the full set of attributes, hence the usual practice is to use this subset evaluator in conjunction with a Random or Exhaustive search which looks for the smallest subset with consistency equal to that of the full set of attributes. See: H. Liu, R. Setiono: A probabilistic approach to feature selection - A filter solution. In: 13th International Conference on Machine Learning, 319-327, 1996.

Group: nz.ac.waikato.cms.weka Artifact: consistencySubsetEval
Show documentation Show source 
Download consistencySubsetEval.jar (1.0.2)
 

1 downloads

consistencySubsetEval from group nz.ac.waikato.cms.weka (version 1.0.1)

Evaluates the worth of a subset of attributes by the level of consistency in the class values when the training instances are projected onto the subset of attributes. The consistency of any subset can never be lower than that of the full set of attributes, hence the usual practice is to use this subset evaluator in conjunction with a Random or Exhaustive search which looks for the smallest subset with consistency equal to that of the full set of attributes. See: H. Liu, R. Setiono: A probabilistic approach to feature selection - A filter solution. In: 13th International Conference on Machine Learning, 319-327, 1996.

Group: nz.ac.waikato.cms.weka Artifact: consistencySubsetEval
Show documentation Show source 
Download consistencySubsetEval.jar (1.0.1)
 

1 downloads



Page 1 from 1 (items total 4)


© 2015 - 2024 Weber Informatics LLC | Privacy Policy