All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.meta.GridSearch Maven / Gradle / Ivy

Go to download

Performs a grid search of parameter pairs for the a classifier (Y-axis, default is LinearRegression with the "Ridge" parameter) and the PLSFilter (X-axis, "# of Components") and chooses the best pair found for the actual predicting. The initial grid is worked on with 2-fold CV to determine the values of the parameter pairs for the selected type of evaluation (e.g., accuracy). The best point in the grid is then taken and a 10-fold CV is performed with the adjacent parameter pairs. If a better pair is found, then this will act as new center and another 10-fold CV will be performed (kind of hill-climbing). This process is repeated until no better pair is found or the best pair is on the border of the grid. In case the best pair is on the border, one can let GridSearch automatically extend the grid and continue the search. Check out the properties 'gridIsExtendable' (option '-extend-grid') and 'maxGridExtensions' (option '-max-grid-extensions <num>'). GridSearch can handle doubles, integers (values are just cast to int) and booleans (0 is false, otherwise true). float, char and long are supported as well. The best filter/classifier setup can be accessed after the buildClassifier call via the getBestFilter/getBestClassifier methods. Note on the implementation: after the data has been passed through the filter, a default NumericCleaner filter is applied to the data in order to avoid numbers that are getting too small and might produce NaNs in other schemes.

There is a newer version: 1.0.12
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * GridSearch.java
 * Copyright (C) 2006-2010 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.meta;

import java.beans.PropertyDescriptor;
import java.io.File;
import java.io.Serializable;
import java.util.Collections;
import java.util.Comparator;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.Random;
import java.util.Vector;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.RandomizableSingleClassifierEnhancer;
import weka.classifiers.functions.LinearRegression;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Debug;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MathematicalExpression;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.PropertyPath;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.SerializedObject;
import weka.core.Summarizable;
import weka.core.Tag;
import weka.core.Utils;
import weka.core.WekaException;
import weka.core.Capabilities.Capability;
import weka.filters.AllFilter;
import weka.filters.Filter;
import weka.filters.supervised.attribute.PLSFilter;
import weka.filters.unsupervised.attribute.MathExpression;
import weka.filters.unsupervised.attribute.NumericCleaner;
import weka.filters.unsupervised.instance.Resample;

/**
 
 * Performs a grid search of parameter pairs for the a classifier (Y-axis, default is LinearRegression with the "Ridge" parameter) and the PLSFilter (X-axis, "# of Components") and chooses the best pair found for the actual predicting.
*
* The initial grid is worked on with 2-fold CV to determine the values of the parameter pairs for the selected type of evaluation (e.g., accuracy). The best point in the grid is then taken and a 10-fold CV is performed with the adjacent parameter pairs. If a better pair is found, then this will act as new center and another 10-fold CV will be performed (kind of hill-climbing). This process is repeated until no better pair is found or the best pair is on the border of the grid.
* In case the best pair is on the border, one can let GridSearch automatically extend the grid and continue the search. Check out the properties 'gridIsExtendable' (option '-extend-grid') and 'maxGridExtensions' (option '-max-grid-extensions <num>').
*
* GridSearch can handle doubles, integers (values are just cast to int) and booleans (0 is false, otherwise true). float, char and long are supported as well.
*
* The best filter/classifier setup can be accessed after the buildClassifier call via the getBestFilter/getBestClassifier methods.
* Note on the implementation: after the data has been passed through the filter, a default NumericCleaner filter is applied to the data in order to avoid numbers that are getting too small and might produce NaNs in other schemes.
*
* Note: with -num-slots/numExecutionSlots you can specify how many setups are evaluated in parallel, taking advantage of multi-cpu/core architectures. *

* * Valid options are:

* *

 -E <CC|RMSE|RRSE|MAE|RAE|COMB|ACC|KAP|WAUC>
 *  Determines the parameter used for evaluation:
 *  CC = Correlation coefficient
 *  RMSE = Root mean squared error
 *  RRSE = Root relative squared error
 *  MAE = Mean absolute error
 *  RAE = Root absolute error
 *  COMB = Combined = (1-abs(CC)) + RRSE + RAE
 *  ACC = Accuracy
 *  WAUC = Weighted AUC
 *  KAP = Kappa
 *  (default: CC)
* *
 -y-property <option>
 *  The Y option to test (without leading dash).
 *  (default: classifier.ridge)
* *
 -y-min <num>
 *  The minimum for Y.
 *  (default: -10)
* *
 -y-max <num>
 *  The maximum for Y.
 *  (default: +5)
* *
 -y-step <num>
 *  The step size for Y.
 *  (default: 1)
* *
 -y-base <num>
 *  The base for Y.
 *  (default: 10)
* *
 -y-expression <expr>
 *  The expression for Y.
 *  Available parameters:
 *   BASE
 *   FROM
 *   TO
 *   STEP
 *   I - the current iteration value
 *   (from 'FROM' to 'TO' with stepsize 'STEP')
 *  (default: 'pow(BASE,I)')
* *
 -filter <filter specification>
 *  The filter to use (on X axis). Full classname of filter to include, 
 *  followed by scheme options.
 *  (default: weka.filters.supervised.attribute.PLSFilter)
* *
 -x-property <option>
 *  The X option to test (without leading dash).
 *  (default: filter.numComponents)
* *
 -x-min <num>
 *  The minimum for X.
 *  (default: +5)
* *
 -x-max <num>
 *  The maximum for X.
 *  (default: +20)
* *
 -x-step <num>
 *  The step size for X.
 *  (default: 1)
* *
 -x-base <num>
 *  The base for X.
 *  (default: 10)
* *
 -x-expression <expr>
 *  The expression for the X value.
 *  Available parameters:
 *   BASE
 *   MIN
 *   MAX
 *   STEP
 *   I - the current iteration value
 *   (from 'FROM' to 'TO' with stepsize 'STEP')
 *  (default: 'pow(BASE,I)')
* *
 -extend-grid
 *  Whether the grid can be extended.
 *  (default: no)
* *
 -max-grid-extensions <num>
 *  The maximum number of grid extensions (-1 is unlimited).
 *  (default: 3)
* *
 -sample-size <num>
 *  The size (in percent) of the sample to search the inital grid with.
 *  (default: 100)
* *
 -traversal <ROW-WISE|COLUMN-WISE>
 *  The type of traversal for the grid.
 *  (default: COLUMN-WISE)
* *
 -log-file <filename>
 *  The log file to log the messages to.
 *  (default: none)
* *
 -num-slots <num>
 *  Number of execution slots.
 *  (default 1 - i.e. no parallelism)
* *
 -S <num>
 *  Random number seed.
 *  (default 1)
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.functions.LinearRegression)
* *
 
 * Options specific to classifier weka.classifiers.functions.LinearRegression:
 * 
* *
 -D
 *  Produce debugging output.
 *  (default no debugging output)
* *
 -S <number of selection method>
 *  Set the attribute selection method to use. 1 = None, 2 = Greedy.
 *  (default 0 = M5' method)
* *
 -C
 *  Do not try to eliminate colinear attributes.
 * 
* *
 -R <double>
 *  Set ridge parameter (default 1.0e-8).
 * 
* *
 
 * Options specific to filter weka.filters.supervised.attribute.PLSFilter ('-filter'):
 * 
* *
 -D
 *  Turns on output of debugging information.
* *
 -C <num>
 *  The number of components to compute.
 *  (default: 20)
* *
 -U
 *  Updates the class attribute as well.
 *  (default: off)
* *
 -M
 *  Turns replacing of missing values on.
 *  (default: off)
* *
 -A <SIMPLS|PLS1>
 *  The algorithm to use.
 *  (default: PLS1)
* *
 -P <none|center|standardize>
 *  The type of preprocessing that is applied to the data.
 *  (default: center)
* * * Examples: *
    *
  • * Optimizing SMO with RBFKernel (C and gamma) *
      *
    • Set the evaluation to Accuracy.
    • *
    • Set the filter to weka.filters.AllFilter since we * don't need any special data processing and we don't optimize the * filter in this case (data gets always passed through filter!).
    • *
    • Set weka.classifiers.functions.SMO as classifier * with weka.classifiers.functions.supportVector.RBFKernel * as kernel. *
    • *
    • Set the XProperty to "classifier.c", XMin to "1", XMax to "16", * XStep to "1" and the XExpression to "I". This will test the "C" * parameter of SMO for the values from 1 to 16.
    • *
    • Set the YProperty to "classifier.kernel.gamma", YMin to "-5", * YMax to "2", YStep to "1" YBase to "10" and YExpression to * "pow(BASE,I)". This will test the gamma of the RBFKernel with the * values 10^-5, 10^-4,..,10^2.
    • *
    *
  • *
  • * Optimizing PLSFilter with LinearRegression (# of components and ridge) - default setup *
      *
    • Set the evaluation to Correlation coefficient.
    • *
    • Set the filter to weka.filters.supervised.attribute.PLSFilter.
    • *
    • Set weka.classifiers.functions.LinearRegression as * classifier and use no attribute selection and no elimination of * colinear attributes.
    • *
    • Set the XProperty to "filter.numComponents", XMin to "5", XMax * to "20" (this depends heavily on your dataset, should be no more * than the number of attributes!), XStep to "1" and XExpression to * "I". This will test the number of components the PLSFilter will * produce from 5 to 20.
    • *
    • Set the YProperty to "classifier.ridge", XMin to "-10", XMax to * "5", YStep to "1" and YExpression to "pow(BASE,I)". This will * try ridge parameters from 10^-10 to 10^5.
    • *
    *
  • *
* * General notes: *
    *
  • Turn the debug flag on in order to see some progress output in the * console
  • *
  • If you want to view the fitness landscape that GridSearch explores, * select a log file. This log will then contain Gnuplot data and * script block for viewing the landscape. Just copy paste those blocks * into files named accordingly and run Gnuplot with them.
  • *
* * @author Bernhard Pfahringer (bernhard at cs dot waikato dot ac dot nz) * @author Geoff Holmes (geoff at cs dot waikato dot ac dot nz) * @author fracpete (fracpete at waikato dot ac dot nz) * @version $Revision: 8109 $ * @see PLSFilter * @see LinearRegression * @see NumericCleaner */ public class GridSearch extends RandomizableSingleClassifierEnhancer implements AdditionalMeasureProducer, Summarizable { /** * a serializable version of Point2D.Double. * * @see java.awt.geom.Point2D.Double */ protected static class PointDouble extends java.awt.geom.Point2D.Double implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 7151661776161898119L; /** * the default constructor. * * @param x the x value of the point * @param y the y value of the point */ public PointDouble(double x, double y) { super(x, y); } /** * Determines whether or not two points are equal. * * @param obj an object to be compared with this PointDouble * @return true if the object to be compared has the same values; * false otherwise. */ public boolean equals(Object obj) { PointDouble pd; pd = (PointDouble) obj; return (Utils.eq(this.getX(), pd.getX()) && Utils.eq(this.getY(), pd.getY())); } /** * returns a string representation of the Point. * * @return the point as string */ public String toString() { return super.toString().replaceAll(".*\\[", "["); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * a serializable version of Point. * * @see java.awt.Point */ protected static class PointInt extends java.awt.Point implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = -5900415163698021618L; /** * the default constructor. * * @param x the x value of the point * @param y the y value of the point */ public PointInt(int x, int y) { super(x, y); } /** * returns a string representation of the Point. * * @return the point as string */ public String toString() { return super.toString().replaceAll(".*\\[", "["); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * for generating the parameter pairs in a grid. */ protected static class Grid implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 7290732613611243139L; /** the minimum on the X axis. */ protected double m_MinX; /** the maximum on the X axis. */ protected double m_MaxX; /** the step size for the X axis. */ protected double m_StepX; /** the label for the X axis. */ protected String m_LabelX; /** the minimum on the Y axis. */ protected double m_MinY; /** the maximum on the Y axis. */ protected double m_MaxY; /** the step size for the Y axis. */ protected double m_StepY; /** the label for the Y axis. */ protected String m_LabelY; /** the number of points on the X axis. */ protected int m_Width; /** the number of points on the Y axis. */ protected int m_Height; /** * initializes the grid. * * @param minX the minimum on the X axis * @param maxX the maximum on the X axis * @param stepX the step size for the X axis * @param minY the minimum on the Y axis * @param maxY the maximum on the Y axis * @param stepY the step size for the Y axis */ public Grid(double minX, double maxX, double stepX, double minY, double maxY, double stepY) { this(minX, maxX, stepX, "", minY, maxY, stepY, ""); } /** * initializes the grid. * * @param minX the minimum on the X axis * @param maxX the maximum on the X axis * @param stepX the step size for the X axis * @param labelX the label for the X axis * @param minY the minimum on the Y axis * @param maxY the maximum on the Y axis * @param stepY the step size for the Y axis * @param labelY the label for the Y axis */ public Grid(double minX, double maxX, double stepX, String labelX, double minY, double maxY, double stepY, String labelY) { super(); m_MinX = minX; m_MaxX = maxX; m_StepX = stepX; m_LabelX = labelX; m_MinY = minY; m_MaxY = maxY; m_StepY = stepY; m_LabelY = labelY; m_Height = (int) StrictMath.round((m_MaxY - m_MinY) / m_StepY) + 1; m_Width = (int) StrictMath.round((m_MaxX - m_MinX) / m_StepX) + 1; // is min < max? if (m_MinX >= m_MaxX) throw new IllegalArgumentException("XMin must be smaller than XMax!"); if (m_MinY >= m_MaxY) throw new IllegalArgumentException("YMin must be smaller than YMax!"); // steps positive? if (m_StepX <= 0) throw new IllegalArgumentException("XStep must be a positive number!"); if (m_StepY <= 0) throw new IllegalArgumentException("YStep must be a positive number!"); // check borders if (!Utils.eq(m_MinX + (m_Width-1)*m_StepX, m_MaxX)) throw new IllegalArgumentException( "X axis doesn't match! Provided max: " + m_MaxX + ", calculated max via min and step size: " + (m_MinX + (m_Width-1)*m_StepX)); if (!Utils.eq(m_MinY + (m_Height-1)*m_StepY, m_MaxY)) throw new IllegalArgumentException( "Y axis doesn't match! Provided max: " + m_MaxY + ", calculated max via min and step size: " + (m_MinY + (m_Height-1)*m_StepY)); } /** * Tests itself against the provided grid object. * * @param o the grid object to compare against * @return if the two grids have the same setup */ public boolean equals(Object o) { boolean result; Grid g; g = (Grid) o; result = (width() == g.width()) && (height() == g.height()) && (getMinX() == g.getMinX()) && (getMinY() == g.getMinY()) && (getStepX() == g.getStepX()) && (getStepY() == g.getStepY()) && getLabelX().equals(g.getLabelX()) && getLabelY().equals(g.getLabelY()); return result; } /** * returns the left border. * * @return the left border */ public double getMinX() { return m_MinX; } /** * returns the right border. * * @return the right border */ public double getMaxX() { return m_MaxX; } /** * returns the step size on the X axis. * * @return the step size */ public double getStepX() { return m_StepX; } /** * returns the label for the X axis. * * @return the label */ public String getLabelX() { return m_LabelX; } /** * returns the bottom border. * * @return the bottom border */ public double getMinY() { return m_MinY; } /** * returns the top border. * * @return the top border */ public double getMaxY() { return m_MaxY; } /** * returns the step size on the Y axis. * * @return the step size */ public double getStepY() { return m_StepY; } /** * returns the label for the Y axis. * * @return the label */ public String getLabelY() { return m_LabelY; } /** * returns the number of points in the grid on the Y axis (incl. borders) * * @return the number of points in the grid on the Y axis */ public int height() { return m_Height; } /** * returns the number of points in the grid on the X axis (incl. borders) * * @return the number of points in the grid on the X axis */ public int width() { return m_Width; } /** * returns the values at the given point in the grid. * * @param x the x-th point on the X axis * @param y the y-th point on the Y axis * @return the value pair at the given position */ public PointDouble getValues(int x, int y) { if (x >= width()) throw new IllegalArgumentException("Index out of scope on X axis (" + x + " >= " + width() + ")!"); if (y >= height()) throw new IllegalArgumentException("Index out of scope on Y axis (" + y + " >= " + height() + ")!"); return new PointDouble(m_MinX + m_StepX*x, m_MinY + m_StepY*y); } /** * returns the closest index pair for the given value pair in the grid. * * @param values the values to get the indices for * @return the closest indices in the grid */ public PointInt getLocation(PointDouble values) { PointInt result; int x; int y; double distance; double currDistance; int i; // determine x x = 0; distance = m_StepX; for (i = 0; i < width(); i++) { currDistance = StrictMath.abs(values.getX() - getValues(i, 0).getX()); if (Utils.sm(currDistance, distance)) { distance = currDistance; x = i; } } // determine y y = 0; distance = m_StepY; for (i = 0; i < height(); i++) { currDistance = StrictMath.abs(values.getY() - getValues(0, i).getY()); if (Utils.sm(currDistance, distance)) { distance = currDistance; y = i; } } result = new PointInt(x, y); return result; } /** * checks whether the given values are on the border of the grid. * * @param values the values to check * @return true if the the values are on the border */ public boolean isOnBorder(PointDouble values) { return isOnBorder(getLocation(values)); } /** * checks whether the given location is on the border of the grid. * * @param location the location to check * @return true if the the location is on the border */ public boolean isOnBorder(PointInt location) { if (location.getX() == 0) return true; else if (location.getX() == width() - 1) return true; if (location.getY() == 0) return true; else if (location.getY() == height() - 1) return true; else return false; } /** * returns a subgrid with the same step sizes, but different borders. * * @param top the top index * @param left the left index * @param bottom the bottom index * @param right the right index * @return the Sub-Grid */ public Grid subgrid(int top, int left, int bottom, int right) { return new Grid( getValues(left, top).getX(), getValues(right, top).getX(), getStepX(), getLabelX(), getValues(left, bottom).getY(), getValues(left, top).getY(), getStepY(), getLabelY()); } /** * returns an extended grid that encompasses the given point (won't be on * the border of the grid). * * @param values the point that the grid should contain * @return the extended grid */ public Grid extend(PointDouble values) { double minX; double maxX; double minY; double maxY; double distance; Grid result; // left if (Utils.smOrEq(values.getX(), getMinX())) { distance = getMinX() - values.getX(); // exactly on grid point? if (Utils.eq(distance, 0)) minX = getMinX() - getStepX() * (StrictMath.round(distance / getStepX()) + 1); else minX = getMinX() - getStepX() * (StrictMath.round(distance / getStepX())); } else { minX = getMinX(); } // right if (Utils.grOrEq(values.getX(), getMaxX())) { distance = values.getX() - getMaxX(); // exactly on grid point? if (Utils.eq(distance, 0)) maxX = getMaxX() + getStepX() * (StrictMath.round(distance / getStepX()) + 1); else maxX = getMaxX() + getStepX() * (StrictMath.round(distance / getStepX())); } else { maxX = getMaxX(); } // bottom if (Utils.smOrEq(values.getY(), getMinY())) { distance = getMinY() - values.getY(); // exactly on grid point? if (Utils.eq(distance, 0)) minY = getMinY() - getStepY() * (StrictMath.round(distance / getStepY()) + 1); else minY = getMinY() - getStepY() * (StrictMath.round(distance / getStepY())); } else { minY = getMinY(); } // top if (Utils.grOrEq(values.getY(), getMaxY())) { distance = values.getY() - getMaxY(); // exactly on grid point? if (Utils.eq(distance, 0)) maxY = getMaxY() + getStepY() * (StrictMath.round(distance / getStepY()) + 1); else maxY = getMaxY() + getStepY() * (StrictMath.round(distance / getStepY())); } else { maxY = getMaxY(); } result = new Grid(minX, maxX, getStepX(), getLabelX(), minY, maxY, getStepY(), getLabelY()); // did the grid really extend? if (equals(result)) throw new IllegalStateException("Grid extension failed!"); return result; } /** * returns an Enumeration over all pairs in the given row. * * @param y the row to retrieve * @return an Enumeration over all pairs * @see #getValues(int, int) */ public Enumeration row(int y) { Vector result; int i; result = new Vector(); for (i = 0; i < width(); i++) result.add(getValues(i, y)); return result.elements(); } /** * returns an Enumeration over all pairs in the given column. * * @param x the column to retrieve * @return an Enumeration over all pairs * @see #getValues(int, int) */ public Enumeration column(int x) { Vector result; int i; result = new Vector(); for (i = 0; i < height(); i++) result.add(getValues(x, i)); return result.elements(); } /** * returns a string representation of the grid. * * @return a string representation */ public String toString() { String result; result = "X: " + m_MinX + " - " + m_MaxX + ", Step " + m_StepX; if (m_LabelX.length() != 0) result += " (" + m_LabelX + ")"; result += "\n"; result += "Y: " + m_MinY + " - " + m_MaxY + ", Step " + m_StepY; if (m_LabelY.length() != 0) result += " (" + m_LabelY + ")"; result += "\n"; result += "Dimensions (Rows x Columns): " + height() + " x " + width(); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * A helper class for storing the performance of a values-pair. * Can be sorted with the PerformanceComparator class. * * @see PerformanceComparator */ protected static class Performance implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = -4374706475277588755L; /** the value pair the classifier was built with. */ protected PointDouble m_Values; /** the Correlation coefficient. */ protected double m_CC; /** the Root mean squared error. */ protected double m_RMSE; /** the Root relative squared error. */ protected double m_RRSE; /** the Mean absolute error. */ protected double m_MAE; /** the Relative absolute error. */ protected double m_RAE; /** the Accuracy. */ protected double m_ACC; /** The weighted AUC value. */ protected double m_wAUC; /** the kappa value. */ protected double m_Kappa; /** * initializes the performance container. * * @param values the values-pair * @param evaluation the evaluation to extract the performance * measures from * @throws Exception if retrieving of measures fails */ public Performance(PointDouble values, Evaluation evaluation) throws Exception { super(); m_Values = values; m_RMSE = evaluation.rootMeanSquaredError(); m_RRSE = evaluation.rootRelativeSquaredError(); m_MAE = evaluation.meanAbsoluteError(); m_RAE = evaluation.relativeAbsoluteError(); try { m_wAUC = evaluation.weightedAreaUnderROC(); } catch (Exception e) { m_wAUC = Double.NaN; } try { m_CC = evaluation.correlationCoefficient(); } catch (Exception e) { m_CC = Double.NaN; } try { m_ACC = evaluation.pctCorrect(); } catch (Exception e) { m_ACC = Double.NaN; } try { m_Kappa = evaluation.kappa(); } catch (Exception e) { m_Kappa = Double.NaN; } } /** * returns the performance measure. * * @param evaluation the type of measure to return * @return the performance measure */ public double getPerformance(int evaluation) { double result; result = Double.NaN; switch (evaluation) { case EVALUATION_CC: result = m_CC; break; case EVALUATION_RMSE: result = m_RMSE; break; case EVALUATION_RRSE: result = m_RRSE; break; case EVALUATION_MAE: result = m_MAE; break; case EVALUATION_RAE: result = m_RAE; break; case EVALUATION_COMBINED: result = (1 - StrictMath.abs(m_CC)) + m_RRSE + m_RAE; break; case EVALUATION_ACC: result = m_ACC; break; case EVALUATION_KAPPA: result = m_Kappa; break; case EVALUATION_WAUC: result = m_wAUC; break; default: throw new IllegalArgumentException("Evaluation type '" + evaluation + "' not supported!"); } return result; } /** * returns the values-pair for this performance. * * @return the values-pair */ public PointDouble getValues() { return m_Values; } /** * returns a string representation of this performance object. * * @param evaluation the type of performance to return * @return a string representation */ public String toString(int evaluation) { String result; result = "Performance (" + getValues() + "): " + getPerformance(evaluation) + " (" + new SelectedTag(evaluation, TAGS_EVALUATION) + ")"; return result; } /** * returns a Gnuplot string of this performance object. * * @param evaluation the type of performance to return * @return the gnuplot string (x, y, z) */ public String toGnuplot(int evaluation) { String result; result = getValues().getX() + "\t" + getValues().getY() + "\t" + getPerformance(evaluation); return result; } /** * returns a string representation of this performance object. * * @return a string representation */ public String toString() { String result; int i; result = "Performance (" + getValues() + "): "; for (i = 0; i < TAGS_EVALUATION.length; i++) { if (i > 0) result += ", "; result += getPerformance(TAGS_EVALUATION[i].getID()) + " (" + new SelectedTag(TAGS_EVALUATION[i].getID(), TAGS_EVALUATION) + ")"; } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * A concrete Comparator for the Performance class. * * @see Performance */ protected static class PerformanceComparator implements Comparator, Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 6507592831825393847L; /** the performance measure to use for comparison. * @see GridSearch#TAGS_EVALUATION */ protected int m_Evaluation; /** * initializes the comparator with the given performance measure. * * @param evaluation the performance measure to use * @see GridSearch#TAGS_EVALUATION */ public PerformanceComparator(int evaluation) { super(); m_Evaluation = evaluation; } /** * returns the performance measure that's used to compare the objects. * * @return the performance measure * @see GridSearch#TAGS_EVALUATION */ public int getEvaluation() { return m_Evaluation; } /** * Compares its two arguments for order. Returns a negative integer, * zero, or a positive integer as the first argument is less than, * equal to, or greater than the second. * * @param o1 the first performance * @param o2 the second performance * @return the order */ public int compare(Performance o1, Performance o2) { int result; double p1; double p2; p1 = o1.getPerformance(getEvaluation()); p2 = o2.getPerformance(getEvaluation()); if (Utils.sm(p1, p2)) result = -1; else if (Utils.gr(p1, p2)) result = 1; else result = 0; // only correlation coefficient/accuracy/kappa obey to this order, for the // errors (and the combination of all three), the smaller the number the // better -> hence invert them if ( (getEvaluation() != EVALUATION_CC) && (getEvaluation() != EVALUATION_ACC) && (getEvaluation() != EVALUATION_WAUC) && (getEvaluation() != EVALUATION_KAPPA) ) result = -result; return result; } /** * Indicates whether some other object is "equal to" this Comparator. * * @param obj the object to compare with * @return true if the same evaluation type is used */ public boolean equals(Object obj) { if (!(obj instanceof PerformanceComparator)) throw new IllegalArgumentException("Must be PerformanceComparator!"); return (m_Evaluation == ((PerformanceComparator) obj).m_Evaluation); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * Generates a 2-dim array for the performances from a grid for a certain * type. x-min/y-min is in the bottom-left corner, i.e., getTable()[0][0] * returns the performance for the x-min/y-max pair. *
   * x-min     x-max
   * |-------------|
   *                - y-max
   *                |
   *                |
   *                - y-min
   * 
*/ protected static class PerformanceTable implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 5486491313460338379L; /** the owning classifier. */ protected GridSearch m_Owner; /** the corresponding grid. */ protected Grid m_Grid; /** the performances. */ protected Vector m_Performances; /** the type of performance the table was generated for. */ protected int m_Type; /** the table with the values. */ protected double[][] m_Table; /** the minimum performance. */ protected double m_Min; /** the maximum performance. */ protected double m_Max; /** * initializes the table. * * @param owner the owning GridSearch * @param grid the underlying grid * @param performances the performances * @param type the type of performance */ public PerformanceTable(GridSearch owner, Grid grid, Vector performances, int type) { super(); m_Owner = owner; m_Grid = grid; m_Type = type; m_Performances = performances; generate(); } /** * generates the table. */ protected void generate() { Performance perf; int i; PointInt location; m_Table = new double[getGrid().height()][getGrid().width()]; m_Min = 0; m_Max = 0; for (i = 0; i < getPerformances().size(); i++) { perf = (Performance) getPerformances().get(i); location = getGrid().getLocation(perf.getValues()); m_Table[getGrid().height() - (int) location.getY() - 1][(int) location.getX()] = perf.getPerformance(getType()); // determine min/max if (i == 0) { m_Min = perf.getPerformance(m_Type); m_Max = m_Min; } else { if (perf.getPerformance(m_Type) < m_Min) m_Min = perf.getPerformance(m_Type); if (perf.getPerformance(m_Type) > m_Max) m_Max = perf.getPerformance(m_Type); } } } /** * returns the corresponding grid. * * @return the underlying grid */ public Grid getGrid() { return m_Grid; } /** * returns the underlying performances. * * @return the underlying performances */ public Vector getPerformances() { return m_Performances; } /** * returns the type of performance. * * @return the type of performance */ public int getType() { return m_Type; } /** * returns the generated table. * * @return the performance table * @see #m_Table * @see #generate() */ public double[][] getTable() { return m_Table; } /** * the minimum performance. * * @return the performance */ public double getMin() { return m_Min; } /** * the maximum performance. * * @return the performance */ public double getMax() { return m_Max; } /** * returns the table as string. * * @return the table as string */ public String toString() { String result; int i; int n; result = "Table (" + new SelectedTag(getType(), TAGS_EVALUATION).getSelectedTag().getReadable() + ") - " + "X: " + getGrid().getLabelX() + ", Y: " + getGrid().getLabelY() + ":\n"; for (i = 0; i < getTable().length; i++) { if (i > 0) result += "\n"; for (n = 0; n < getTable()[i].length; n++) { if (n > 0) result += ","; result += getTable()[i][n]; } } return result; } /** * returns a string containing a gnuplot script+data file. * * @return the data in gnuplot format */ public String toGnuplot() { StringBuffer result; Tag type; int i; result = new StringBuffer(); type = new SelectedTag(getType(), TAGS_EVALUATION).getSelectedTag(); result.append("Gnuplot (" + type.getReadable() + "):\n"); result.append("# begin 'gridsearch.data'\n"); result.append("# " + type.getReadable() + "\n"); for (i = 0; i < getPerformances().size(); i++) result.append(getPerformances().get(i).toGnuplot(type.getID()) + "\n"); result.append("# end 'gridsearch.data'\n\n"); result.append("# begin 'gridsearch.plot'\n"); result.append("# " + type.getReadable() + "\n"); result.append("set data style lines\n"); result.append("set contour base\n"); result.append("set surface\n"); result.append("set title '" + m_Owner.getData().relationName() + "'\n"); result.append("set xrange [" + getGrid().getMinX() + ":" + getGrid().getMaxX() + "]\n"); result.append("set xlabel 'x (" + m_Owner.getFilter().getClass().getName() + ": " + m_Owner.getXProperty() + ")'\n"); result.append("set yrange [" + getGrid().getMinY() + ":" + getGrid().getMaxY() + "]\n"); result.append("set ylabel 'y - (" + m_Owner.getClassifier().getClass().getName() + ": " + m_Owner.getYProperty() + ")'\n"); result.append("set zrange [" + (getMin() - (getMax() - getMin())*0.1) + ":" + (getMax() + (getMax() - getMin())*0.1) + "]\n"); result.append("set zlabel 'z - " + type.getReadable() + "'\n"); result.append("set dgrid3d " + getGrid().height() + "," + getGrid().width() + ",1\n"); result.append("show contour\n"); result.append("splot 'gridsearch.data'\n"); result.append("pause -1\n"); result.append("# end 'gridsearch.plot'"); return result.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * Represents a simple cache for performance objects. */ protected static class PerformanceCache implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = 5838863230451530252L; /** the cache for points in the grid that got calculated. */ protected Hashtable m_Cache = new Hashtable(); /** * returns the ID string for a cache item. * * @param cv the number of folds in the cross-validation * @param values the point in the grid * @return the ID string */ protected String getID(int cv, PointDouble values) { return cv + "\t" + values.getX() + "\t" + values.getY(); } /** * checks whether the point was already calculated ones. * * @param cv the number of folds in the cross-validation * @param values the point in the grid * @return true if the value is already cached */ public boolean isCached(int cv, PointDouble values) { return (get(cv, values) != null); } /** * returns a cached performance object, null if not yet in the cache. * * @param cv the number of folds in the cross-validation * @param values the point in the grid * @return the cached performance item, null if not in cache */ public Performance get(int cv, PointDouble values) { return (Performance) m_Cache.get(getID(cv, values)); } /** * adds the performance to the cache. * * @param cv the number of folds in the cross-validation * @param p the performance object to store */ public void add(int cv, Performance p) { m_Cache.put(getID(cv, p.getValues()), p); } /** * returns a string representation of the cache. * * @return the string representation of the cache */ public String toString() { return m_Cache.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * Helper class for generating the setups. */ protected static class SetupGenerator implements Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = -2517395033342543417L; /** the owner. */ protected GridSearch m_Owner; /** the Y option to work on. */ protected String m_Y_Property; /** the minimum of Y. */ protected double m_Y_Min; /** the maximum of Y. */ protected double m_Y_Max; /** the step size of Y. */ protected double m_Y_Step; /** the base for Y. */ protected double m_Y_Base; /** The expression for the Y property. */ protected String m_Y_Expression; /** the X option to work on. */ protected String m_X_Property; /** the minimum of X. */ protected double m_X_Min; /** the maximum of X. */ protected double m_X_Max; /** the step size of X. */ protected double m_X_Step; /** the base for X. */ protected double m_X_Base; /** The expression for the X property. */ protected String m_X_Expression; /** * Initializes the setup generator. * * @param owner the owning classifier */ public SetupGenerator(GridSearch owner) { super(); m_Owner = owner; m_Y_Expression = m_Owner.getYExpression(); m_Y_Property = m_Owner.getYProperty(); m_Y_Min = m_Owner.getYMin(); m_Y_Max = m_Owner.getYMax(); m_Y_Step = m_Owner.getYStep(); m_Y_Base = m_Owner.getYBase(); m_X_Expression = m_Owner.getXExpression(); m_X_Property = m_Owner.getXProperty(); m_X_Min = m_Owner.getXMin(); m_X_Max = m_Owner.getXMax(); m_X_Step = m_Owner.getXStep(); m_X_Base = m_Owner.getXBase(); } /** * evalutes the expression for the current iteration. * * @param value the current iteration value (from 'min' to 'max' with * stepsize 'step') * @param isX true if X is to be evaluated otherwise Y * @return the generated value, NaN if the evaluation fails */ public double evaluate(double value, boolean isX) { double result; HashMap symbols; String expr; double base; double min; double max; double step; if (isX) { expr = m_X_Expression; base = m_X_Base; min = m_X_Min; max = m_X_Max; step = m_X_Step; } else { expr = m_Y_Expression; base = m_Y_Base; min = m_Y_Min; max = m_Y_Max; step = m_Y_Step; } try { symbols = new HashMap(); symbols.put("BASE", new Double(base)); symbols.put("FROM", new Double(min)); symbols.put("TO", new Double(max)); symbols.put("STEP", new Double(step)); symbols.put("I", new Double(value)); result = MathematicalExpression.evaluate(expr, symbols); } catch (Exception e) { e.printStackTrace(); result = Double.NaN; } return result; } /** * tries to set the value as double, integer (just casts it to int!) or * boolean (false if 0, otherwise true) in the object according to the * specified path. float, char and long are also supported. * * @param o the object to modify * @param path the property path * @param value the value to set * @return the modified object * @throws Exception if neither double nor int could be set */ public Object setValue(Object o, String path, double value) throws Exception { PropertyDescriptor desc; Class c; desc = PropertyPath.getPropertyDescriptor(o, path); c = desc.getPropertyType(); // float if ((c == Float.class) || (c == Float.TYPE)) PropertyPath.setValue(o, path, new Float((float) value)); // double else if ((c == Double.class) || (c == Double.TYPE)) PropertyPath.setValue(o, path, new Double(value)); // char else if ((c == Character.class) || (c == Character.TYPE)) PropertyPath.setValue(o, path, new Integer((char) value)); // int else if ((c == Integer.class) || (c == Integer.TYPE)) PropertyPath.setValue(o, path, new Integer((int) value)); // long else if ((c == Long.class) || (c == Long.TYPE)) PropertyPath.setValue(o, path, new Long((long) value)); // boolean else if ((c == Boolean.class) || (c == Boolean.TYPE)) PropertyPath.setValue(o, path, (value == 0 ? new Boolean(false) : new Boolean(true))); else throw new Exception( "Could neither set double nor integer nor boolean value for '" + path + "'!"); return o; } /** * returns a fully configures object (a copy of the provided one). * * @param original the object to create a copy from and set the parameters * @param valueX the current iteration value for X * @param valueY the current iteration value for Y * @return the configured classifier * @throws Exception if setup fails */ public Object setup(Object original, double valueX, double valueY) throws Exception { Object result; result = new SerializedObject(original).getObject(); if (original instanceof Classifier) { if (m_X_Property.startsWith(PREFIX_CLASSIFIER)) setValue( result, m_X_Property.substring(PREFIX_CLASSIFIER.length()), valueX); if (m_Y_Property.startsWith(PREFIX_CLASSIFIER)) setValue( result, m_Y_Property.substring(PREFIX_CLASSIFIER.length()), valueY); } else if (original instanceof Filter) { if (m_X_Property.startsWith(PREFIX_FILTER)) setValue( result, m_X_Property.substring(PREFIX_FILTER.length()), valueX); if (m_Y_Property.startsWith(PREFIX_FILTER)) setValue( result, m_Y_Property.substring(PREFIX_FILTER.length()), valueY); } else { throw new IllegalArgumentException("Object must be either classifier or filter!"); } return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** * Helper class for evaluating a setup. */ protected static class EvaluationTask implements Runnable, RevisionHandler { /** the owner. */ protected GridSearch m_Owner; /** for generating the setups. */ protected SetupGenerator m_Generator; /** the classifier to use. */ protected Classifier m_Classifier; /** the filter to use. */ protected Filter m_Filter; /** the data to use for training. */ protected Instances m_Data; /** the values to use. */ protected PointDouble m_Values; /** the number of folds for cross-validation. */ protected int m_Folds; /** the type of evaluation. */ protected int m_Evaluation; /** * Initializes the task. * * @param owner the owning GridSearch classifier * @param generator the generator for the setips * @param inst the data * @param values the values in the grid * @param folds the number of cross-validation folds * @param eval the type of evaluation */ public EvaluationTask(GridSearch owner, SetupGenerator generator, Instances inst, PointDouble values, int folds, int eval) { super(); m_Owner = owner; m_Generator = generator; m_Classifier = m_Owner.getClassifier(); m_Filter = m_Owner.getFilter(); m_Data = inst; m_Values = values; m_Folds = folds; m_Evaluation = eval; } /** * Performs the evaluation. */ public void run() { Evaluation eval; Classifier classifier; Filter filter; Performance performance; double x; double y; Instances data; classifier = null; filter = null; x = m_Generator.evaluate(m_Values.getX(), true); y = m_Generator.evaluate(m_Values.getY(), false); try { // data pass through filter if (!m_Filter.getClass().equals(AllFilter.class)) { filter = (Filter) m_Generator.setup(m_Filter, x, y); filter.setInputFormat(m_Data); data = Filter.useFilter(m_Data, filter); // make sure that the numbers don't get too small - otherwise NaNs! Filter cleaner = new NumericCleaner(); cleaner.setInputFormat(data); data = Filter.useFilter(data, cleaner); } else { data = m_Data; } // setup classifier classifier = (Classifier) m_Generator.setup(m_Classifier, x, y); // evaluate eval = new Evaluation(data); eval.crossValidateModel(classifier, data, m_Folds, new Random(m_Owner.getSeed())); // store performance performance = new Performance(m_Values, eval); m_Owner.addPerformance(performance, m_Folds); // log m_Owner.log(performance + ": cached=false"); // release slot m_Owner.completedEvaluation(classifier, null); } catch (Exception e) { if (m_Owner.getDebug()) { System.err.println("Encountered exception while evaluating classifier, skipping!"); System.err.println("- Values....: " + m_Values); System.err.println("- Filter....: " + ((filter != null) ? Utils.toCommandLine(filter) : "-no setup-")); System.err.println("- Classifier: " + ((classifier != null) ? Utils.toCommandLine(classifier) : "-no setup-")); e.printStackTrace(); } m_Owner.completedEvaluation(m_Values, e); } // clean up m_Owner = null; m_Data = null; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8109 $"); } } /** for serialization. */ private static final long serialVersionUID = -3034773968581595348L; /** evaluation via: Correlation coefficient. */ public static final int EVALUATION_CC = 0; /** evaluation via: Root mean squared error. */ public static final int EVALUATION_RMSE = 1; /** evaluation via: Root relative squared error. */ public static final int EVALUATION_RRSE = 2; /** evaluation via: Mean absolute error. */ public static final int EVALUATION_MAE = 3; /** evaluation via: Relative absolute error. */ public static final int EVALUATION_RAE = 4; /** evaluation via: Combined = (1-CC) + RRSE + RAE. */ public static final int EVALUATION_COMBINED = 5; /** evaluation via: Accuracy. */ public static final int EVALUATION_ACC = 6; /** evaluation via: kappa statistic. */ public static final int EVALUATION_KAPPA = 7; /** evaluation via: weighted AUC */ public static final int EVALUATION_WAUC = 8; /** evaluation. */ public static final Tag[] TAGS_EVALUATION = { new Tag(EVALUATION_CC, "CC", "Correlation coefficient"), new Tag(EVALUATION_RMSE, "RMSE", "Root mean squared error"), new Tag(EVALUATION_RRSE, "RRSE", "Root relative squared error"), new Tag(EVALUATION_MAE, "MAE", "Mean absolute error"), new Tag(EVALUATION_RAE, "RAE", "Root absolute error"), new Tag(EVALUATION_COMBINED, "COMB", "Combined = (1-abs(CC)) + RRSE + RAE"), new Tag(EVALUATION_ACC, "ACC", "Accuracy"), new Tag(EVALUATION_WAUC, "WAUC", "Weighted AUC"), new Tag(EVALUATION_KAPPA, "KAP", "Kappa") }; /** row-wise grid traversal. */ public static final int TRAVERSAL_BY_ROW = 0; /** column-wise grid traversal. */ public static final int TRAVERSAL_BY_COLUMN = 1; /** traversal. */ public static final Tag[] TAGS_TRAVERSAL = { new Tag(TRAVERSAL_BY_ROW, "row-wise", "row-wise"), new Tag(TRAVERSAL_BY_COLUMN, "column-wise", "column-wise") }; /** the prefix to indicate that the option is for the classifier. */ public final static String PREFIX_CLASSIFIER = "classifier."; /** the prefix to indicate that the option is for the filter. */ public final static String PREFIX_FILTER = "filter."; /** the Filter. */ protected Filter m_Filter; /** the Filter with the best setup. */ protected Filter m_BestFilter; /** the Classifier with the best setup. */ protected Classifier m_BestClassifier; /** the best values. */ protected PointDouble m_Values = null; /** the type of evaluation. */ protected int m_Evaluation = EVALUATION_CC; /** the Y option to work on (without leading dash, preceding 'classifier.' * means to set the option for the classifier 'filter.' for the filter). */ protected String m_Y_Property = PREFIX_CLASSIFIER + "ridge"; /** the minimum of Y. */ protected double m_Y_Min = -10; /** the maximum of Y. */ protected double m_Y_Max = +5; /** the step size of Y. */ protected double m_Y_Step = 1; /** the base for Y. */ protected double m_Y_Base = 10; /** * The expression for the Y property. Available parameters for the * expression: *
    *
  • BASE
  • *
  • FROM (= min)
  • *
  • TO (= max)
  • *
  • STEP
  • *
  • I - the current value (from 'from' to 'to' with stepsize 'step')
  • *
* * @see MathematicalExpression * @see MathExpression */ protected String m_Y_Expression = "pow(BASE,I)"; /** the X option to work on (without leading dash, preceding 'classifier.' * means to set the option for the classifier 'filter.' for the filter). */ protected String m_X_Property = PREFIX_FILTER + "numComponents"; /** the minimum of X. */ protected double m_X_Min = +5; /** the maximum of X. */ protected double m_X_Max = +20; /** the step size of X. */ protected double m_X_Step = 1; /** the base for X. */ protected double m_X_Base = 10; /** * The expression for the X property. Available parameters for the * expression: *
    *
  • BASE
  • *
  • FROM (= min)
  • *
  • TO (= max)
  • *
  • STEP
  • *
  • I - the current value (from 'from' to 'to' with stepsize 'step')
  • *
* * @see MathematicalExpression * @see MathExpression */ protected String m_X_Expression = "I"; /** whether the grid can be extended. */ protected boolean m_GridIsExtendable = false; /** maximum number of grid extensions (-1 means unlimited). */ protected int m_MaxGridExtensions = 3; /** the number of extensions performed. */ protected int m_GridExtensionsPerformed = 0; /** the sample size to search the initial grid with. */ protected double m_SampleSize = 100; /** the traversal. */ protected int m_Traversal = TRAVERSAL_BY_COLUMN; /** the log file to use. */ protected File m_LogFile = new File(System.getProperty("user.dir")); /** the value-pairs grid. */ protected Grid m_Grid; /** the training data. */ protected Instances m_Data; /** the cache for points in the grid that got calculated. */ protected PerformanceCache m_Cache; /** for storing the performances. */ protected Vector m_Performances; /** whether all performances in the grid are the same. */ protected boolean m_UniformPerformance = false; /** The number of threads to have executing at any one time. */ protected int m_NumExecutionSlots = 1; /** Pool of threads to train models with. */ protected transient ThreadPoolExecutor m_ExecutorPool; /** The number of setups completed so far. */ protected int m_Completed; /** The number of setups that experienced a failure of some sort * during construction. */ protected int m_Failed; /** the number of setups to evaluate. */ protected int m_NumSetups; /** the generator for generating the setups. */ protected SetupGenerator m_Generator; /** for storing an exception that happened in one of the worker threads. */ protected transient Exception m_Exception; /** * the default constructor. */ public GridSearch() { super(); // classifier m_Classifier = new LinearRegression(); ((LinearRegression) m_Classifier).setAttributeSelectionMethod(new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION)); ((LinearRegression) m_Classifier).setEliminateColinearAttributes(false); // filter m_Filter = new PLSFilter(); PLSFilter filter = new PLSFilter(); filter.setPreprocessing(new SelectedTag(PLSFilter.PREPROCESSING_STANDARDIZE, PLSFilter.TAGS_PREPROCESSING)); filter.setReplaceMissing(true); try { m_BestClassifier = AbstractClassifier.makeCopy(m_Classifier); } catch (Exception e) { e.printStackTrace(); } try { m_BestFilter = Filter.makeCopy(filter); } catch (Exception e) { e.printStackTrace(); } } /** * Returns a string describing classifier. * * @return a description suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Performs a grid search of parameter pairs for the a classifier " + "(Y-axis, default is LinearRegression with the \"Ridge\" parameter) " + "and the PLSFilter (X-axis, \"# of Components\") and chooses the best " + "pair found for the actual predicting.\n\n" + "The initial grid is worked on with 2-fold CV to determine the values " + "of the parameter pairs for the selected type of evaluation (e.g., " + "accuracy). The best point in the grid is then taken and a 10-fold CV " + "is performed with the adjacent parameter pairs. If a better pair is " + "found, then this will act as new center and another 10-fold CV will " + "be performed (kind of hill-climbing). This process is repeated until " + "no better pair is found or the best pair is on the border of the grid.\n" + "In case the best pair is on the border, one can let GridSearch " + "automatically extend the grid and continue the search. Check out the " + "properties 'gridIsExtendable' (option '-extend-grid') and " + "'maxGridExtensions' (option '-max-grid-extensions ').\n\n" + "GridSearch can handle doubles, integers (values are just cast to int) " + "and booleans (0 is false, otherwise true). float, char and long are " + "supported as well.\n\n" + "The best filter/classifier setup can be accessed after the buildClassifier " + "call via the getBestFilter/getBestClassifier methods.\n" + "Note on the implementation: after the data has been passed through " + "the filter, a default NumericCleaner filter is applied to the data in " + "order to avoid numbers that are getting too small and might produce " + "NaNs in other schemes.\n\n" + "Note: with -num-slots/numExecutionSlots you can specify how many " + "setups are evaluated in parallel, taking advantage of multi-cpu/core " + "architectures."; } /** * String describing default classifier. * * @return the classname of the default classifier */ protected String defaultClassifierString() { return LinearRegression.class.getName(); } /** * Gets an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions(){ Vector result; Enumeration en; String desc; SelectedTag tag; int i; result = new Vector(); desc = ""; for (i = 0; i < TAGS_EVALUATION.length; i++) { tag = new SelectedTag(TAGS_EVALUATION[i].getID(), TAGS_EVALUATION); desc += "\t" + tag.getSelectedTag().getIDStr() + " = " + tag.getSelectedTag().getReadable() + "\n"; } result.addElement(new Option( "\tDetermines the parameter used for evaluation:\n" + desc + "\t(default: " + new SelectedTag(EVALUATION_CC, TAGS_EVALUATION) + ")", "E", 1, "-E " + Tag.toOptionList(TAGS_EVALUATION))); result.addElement(new Option( "\tThe Y option to test (without leading dash).\n" + "\t(default: " + PREFIX_CLASSIFIER + "ridge)", "y-property", 1, "-y-property




© 2015 - 2025 Weber Informatics LLC | Privacy Policy