All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.LatentSemanticAnalysis Maven / Gradle / Ivy

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    LatentSemanticAnalysis.java
 *    Copyright (C) 2008 Amri Napolitano
 *
 */

package weka.attributeSelection;

import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Check;
import weka.core.CheckOptionHandler;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.DenseInstance;
import weka.core.Instances;
import weka.core.matrix.Matrix;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SparseInstance;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.core.matrix.SingularValueDecomposition;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.Remove;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.util.Enumeration;
import java.util.Vector;

/**
 
 * Performs latent semantic analysis and transformation of the data. 
 * Use in conjunction with a Ranker search. A low-rank approximation 
 * of the full data is found by specifying the number of singular values 
 * to use. The dataset may be transformed to give the relation of either 
 * the attributes or the instances (default) to the concept space created 
 * by the transformation.
 * 

* * Valid options are:

* *

 -N
 *  Normalize input data.
* *
 -R
 *  Rank approximation used in LSA. May be actual number of 
 *  LSA attributes to include (if greater than 1) or a proportion 
 *  of total singular values to account for (if between 0 and 1). 
 *  A value less than or equal to zero means use all latent variables.
 *  (default = 0.95)
* *
 -A
 *  Maximum number of attributes to include in 
 *  transformed attribute names. (-1 = include all)
* * * @author Amri Napolitano * @version $Revision: 8108 $ */ public class LatentSemanticAnalysis extends UnsupervisedAttributeEvaluator implements AttributeTransformer, OptionHandler { /** For serialization */ static final long serialVersionUID = -8712112988018106198L; /** The data to transform analyse/transform */ private Instances m_trainInstances; /** * Keep a copy for the class attribute (if set) and for * checking for header compatibility */ private Instances m_trainHeader; /** The header for the transformed data format */ private Instances m_transformedFormat; /** Data has a class set */ private boolean m_hasClass; /** Class index */ private int m_classIndex; /** Number of attributes */ private int m_numAttributes; /** Number of instances */ private int m_numInstances; /** Is transpose necessary because numAttributes < numInstances? */ private boolean m_transpose = false; /** Will hold the left singular vectors */ private Matrix m_u = null; /** Will hold the singular values */ private Matrix m_s = null; /** Will hold the right singular values */ private Matrix m_v = null; /** Will hold the matrix used to transform instances to the new feature space */ private Matrix m_transformationMatrix = null; /** Filters for original data */ private ReplaceMissingValues m_replaceMissingFilter; private Normalize m_normalizeFilter; private NominalToBinary m_nominalToBinaryFilter; private Remove m_attributeFilter; /** The number of attributes in the LSA transformed data */ private int m_outputNumAttributes = -1; /** Normalize the input data? */ private boolean m_normalize = false; /** The approximation rank to use (between 0 and 1 means coverage proportion) */ private double m_rank = 0.95; /** The sum of the squares of the singular values */ private double m_sumSquaredSingularValues = 0.0; /** The actual rank number to use for computation */ private int m_actualRank = -1; /** Maximum number of attributes in the transformed attribute name */ private int m_maxAttributesInName = 5; /** * Returns a string describing this attribute transformer * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Performs latent semantic analysis and transformation of the data. Use in " + "conjunction with a Ranker search. A low-rank approximation of the full data is " + "found by either specifying the number of singular values to use or specifying a " + "proportion of the singular values to cover."; } /** * Returns an enumeration describing the available options.

* * @return an enumeration of all the available options. **/ public Enumeration listOptions () { Vector options = new Vector(4); options.addElement(new Option("\tNormalize input data.", "N", 0, "-N")); options.addElement(new Option("\tRank approximation used in LSA. \n" + "\tMay be actual number of LSA attributes \n" + "\tto include (if greater than 1) or a \n" + "\tproportion of total singular values to \n" + "\taccount for (if between 0 and 1). \n" + "\tA value less than or equal to zero means \n" + "\tuse all latent variables.(default = 0.95)", "R",1,"-R")); options.addElement(new Option("\tMaximum number of attributes to include\n" + "\tin transformed attribute names.\n" + "\t(-1 = include all)" , "A", 1, "-A")); return options.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -N
   *  Normalize input data.
* *
 -R
   *  Rank approximation used in LSA. May be actual number of 
   *  LSA attributes to include (if greater than 1) or a proportion 
   *  of total singular values to account for (if between 0 and 1). 
   *  A value less than or equal to zero means use all latent variables.
   *  (default = 0.95)
* *
 -A
   *  Maximum number of attributes to include in 
   *  transformed attribute names. (-1 = include all)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions (String[] options) throws Exception { resetOptions(); String optionString; //set approximation rank optionString = Utils.getOption('R', options); if (optionString.length() != 0) { double temp; temp = Double.valueOf(optionString).doubleValue(); setRank(temp); } //set number of attributes to use in transformed names optionString = Utils.getOption('A', options); if (optionString.length() != 0) { setMaximumAttributeNames(Integer.parseInt(optionString)); } //set normalize option setNormalize(Utils.getFlag('N', options)); } /** * Reset to defaults */ private void resetOptions() { m_rank = 0.95; m_normalize = true; m_maxAttributesInName = 5; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String normalizeTipText() { return "Normalize input data."; } /** * Set whether input data will be normalized. * @param newNormalize true if input data is to be normalized */ public void setNormalize(boolean newNormalize) { m_normalize = newNormalize; } /** * Gets whether or not input data is to be normalized * @return true if input data is to be normalized */ public boolean getNormalize() { return m_normalize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String rankTipText() { return "Matrix rank to use for data reduction. Can be a" + " proportion to indicate desired coverage"; } /** * Sets the desired matrix rank (or coverage proportion) for feature-space reduction * @param newRank the desired rank (or coverage) for feature-space reduction */ public void setRank(double newRank) { m_rank = newRank; } /** * Gets the desired matrix rank (or coverage proportion) for feature-space reduction * @return the rank (or coverage) for feature-space reduction */ public double getRank() { return m_rank; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maximumAttributeNamesTipText() { return "The maximum number of attributes to include in transformed attribute names."; } /** * Sets maximum number of attributes to include in * transformed attribute names. * @param newMaxAttributes the maximum number of attributes */ public void setMaximumAttributeNames(int newMaxAttributes) { m_maxAttributesInName = newMaxAttributes; } /** * Gets maximum number of attributes to include in * transformed attribute names. * @return the maximum number of attributes */ public int getMaximumAttributeNames() { return m_maxAttributesInName; } /** * Gets the current settings of LatentSemanticAnalysis * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions () { String[] options = new String[5]; int current = 0; if (getNormalize()) { options[current++] = "-N"; } options[current++] = "-R"; options[current++] = "" + getRank(); options[current++] = "-A"; options[current++] = "" + getMaximumAttributeNames(); while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); result.enable(Capability.NO_CLASS); return result; } /** * Initializes the singular values/vectors and performs the analysis * @param data the instances to analyse/transform * @throws Exception if analysis fails */ public void buildEvaluator(Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); buildAttributeConstructor(data); } /** * Initializes the singular values/vectors and performs the analysis * @param data the instances to analyse/transform * @throws Exception if analysis fails */ private void buildAttributeConstructor (Instances data) throws Exception { // initialize attributes for performing analysis m_transpose = false; m_s = null; m_u = null; m_v = null; m_outputNumAttributes = -1; m_actualRank = -1; m_sumSquaredSingularValues = 0.0; m_trainInstances = new Instances(data); m_trainHeader = null; m_attributeFilter = null; m_nominalToBinaryFilter = null; m_replaceMissingFilter = new ReplaceMissingValues(); m_replaceMissingFilter.setInputFormat(m_trainInstances); m_trainInstances = Filter.useFilter(m_trainInstances, m_replaceMissingFilter); // vector to hold indices of attributes to delete (class attribute, // attributes that are all missing, or attributes with one distinct value) Vector attributesToRemove = new Vector(); // if data has a class attribute if (m_trainInstances.classIndex() >= 0) { m_hasClass = true; m_classIndex = m_trainInstances.classIndex(); // set class attribute to be removed attributesToRemove.addElement(new Integer(m_classIndex)); } // make copy of training data so the class values (if set) can be appended to final // transformed instances and so that we can check header compatibility m_trainHeader = new Instances(m_trainInstances, 0); // normalize data if desired if (m_normalize) { m_normalizeFilter = new Normalize(); m_normalizeFilter.setInputFormat(m_trainInstances); m_trainInstances = Filter.useFilter(m_trainInstances, m_normalizeFilter); } // convert any nominal attributes to binary numeric attributes m_nominalToBinaryFilter = new NominalToBinary(); m_nominalToBinaryFilter.setInputFormat(m_trainInstances); m_trainInstances = Filter.useFilter(m_trainInstances, m_nominalToBinaryFilter); // delete any attributes with only one distinct value or are all missing for (int i = 0; i < m_trainInstances.numAttributes(); i++) { if (m_trainInstances.numDistinctValues(i) <= 1) { attributesToRemove.addElement(new Integer(i)); } } // remove columns from the data if necessary if (attributesToRemove.size() > 0) { m_attributeFilter = new Remove(); int [] todelete = new int[attributesToRemove.size()]; for (int i = 0; i < attributesToRemove.size(); i++) { todelete[i] = ((Integer)(attributesToRemove.elementAt(i))).intValue(); } m_attributeFilter.setAttributeIndicesArray(todelete); m_attributeFilter.setInvertSelection(false); m_attributeFilter.setInputFormat(m_trainInstances); m_trainInstances = Filter.useFilter(m_trainInstances, m_attributeFilter); } // can evaluator handle the processed data ? e.g., enough attributes? getCapabilities().testWithFail(m_trainInstances); // record properties of final, ready-to-process data m_numInstances = m_trainInstances.numInstances(); m_numAttributes = m_trainInstances.numAttributes(); // create matrix of attribute values and compute singular value decomposition double [][] trainValues = new double[m_numAttributes][m_numInstances]; for (int i = 0; i < m_numAttributes; i++) { trainValues[i] = m_trainInstances.attributeToDoubleArray(i); } Matrix trainMatrix = new Matrix(trainValues); // svd requires rows >= columns, so transpose data if necessary if (m_numAttributes < m_numInstances) { m_transpose = true; trainMatrix = trainMatrix.transpose(); } SingularValueDecomposition trainSVD = trainMatrix.svd(); m_u = trainSVD.getU(); // left singular vectors m_s = trainSVD.getS(); // singular values m_v = trainSVD.getV(); // right singular vectors // find actual rank to use int maxSingularValues = trainSVD.rank(); for (int i = 0; i < m_s.getRowDimension(); i++) { m_sumSquaredSingularValues += m_s.get(i, i) * m_s.get(i, i); } if (maxSingularValues == 0) { // no nonzero singular values (shouldn't happen) // reset values from computation m_s = null; m_u = null; m_v = null; m_sumSquaredSingularValues = 0.0; throw new Exception("SVD computation produced no non-zero singular values."); } if (m_rank > maxSingularValues || m_rank <= 0) { // adjust rank if too high or too low m_actualRank = maxSingularValues; } else if (m_rank < 1.0) { // determine how many singular values to include for desired coverage double currentSumOfSquaredSingularValues = 0.0; for (int i = 0; i < m_s.getRowDimension() && m_actualRank == -1; i++) { currentSumOfSquaredSingularValues += m_s.get(i, i) * m_s.get(i, i); if (currentSumOfSquaredSingularValues / m_sumSquaredSingularValues >= m_rank) { m_actualRank = i + 1; } } } else { m_actualRank = (int) m_rank; } // lower matrix ranks, adjust for transposition (if necessary), and // compute matrix for transforming future instances if (m_transpose) { Matrix tempMatrix = m_u; m_u = m_v; m_v = tempMatrix; } m_u = m_u.getMatrix(0, m_u.getRowDimension() - 1, 0, m_actualRank - 1); m_s = m_s.getMatrix(0, m_actualRank - 1, 0, m_actualRank - 1); m_v = m_v.getMatrix(0, m_v.getRowDimension() - 1, 0, m_actualRank - 1); m_transformationMatrix = m_u.times(m_s.inverse()); //create dataset header for transformed instances m_transformedFormat = setOutputFormat(); } /** * Set the format for the transformed data * @return a set of empty Instances (header only) in the new format */ private Instances setOutputFormat() { // if analysis hasn't been performed (successfully) yet if (m_s == null) { return null; } // set up transformed attributes if (m_hasClass) { m_outputNumAttributes = m_actualRank + 1; } else { m_outputNumAttributes = m_actualRank; } int numAttributesInName = m_maxAttributesInName; if (numAttributesInName <= 0 || numAttributesInName >= m_numAttributes) { numAttributesInName = m_numAttributes; } FastVector attributes = new FastVector(m_outputNumAttributes); for (int i = 0; i < m_actualRank; i++) { // create attribute name String attributeName = ""; double [] attributeCoefficients = m_transformationMatrix.getMatrix(0, m_numAttributes - 1, i, i).getColumnPackedCopy(); for (int j = 0; j < numAttributesInName; j++) { if (j > 0) { attributeName += "+"; } attributeName += Utils.doubleToString(attributeCoefficients[j], 5, 3); attributeName += m_trainInstances.attribute(j).name(); } if (numAttributesInName < m_numAttributes) { attributeName += "..."; } // add attribute attributes.addElement(new Attribute(attributeName)); } // add original class attribute if present if (m_hasClass) { attributes.addElement(m_trainHeader.classAttribute().copy()); } // create blank header Instances outputFormat = new Instances(m_trainInstances.relationName() + "_LSA", attributes, 0); m_outputNumAttributes = outputFormat.numAttributes(); // set class attribute if applicable if (m_hasClass) { outputFormat.setClassIndex(m_outputNumAttributes - 1); } return outputFormat; } /** * Returns just the header for the transformed data (ie. an empty * set of instances. This is so that AttributeSelection can * determine the structure of the transformed data without actually * having to get all the transformed data through getTransformedData(). * @return the header of the transformed data. * @throws Exception if the header of the transformed data can't * be determined. */ public Instances transformedHeader() throws Exception { if (m_s == null) { throw new Exception("Latent Semantic Analysis hasn't been successfully performed."); } return m_transformedFormat; } /** * Transform the supplied data set (assumed to be the same format * as the training data) * @return the transformed training data * @throws Exception if transformed data can't be returned */ public Instances transformedData(Instances data) throws Exception { if (m_s == null) { throw new Exception("Latent Semantic Analysis hasn't been built yet"); } Instances output = new Instances(m_transformedFormat, m_numInstances); // the transformed version of instance i from the training data // is stored as the i'th row vector in v (the right singular vectors) for (int i = 0; i < data.numInstances(); i++) { Instance currentInstance = data.instance(i); // record attribute values for converted instance double [] newValues = new double[m_outputNumAttributes]; for (int j = 0; j < m_actualRank; j++) { // fill in values from v newValues[j] = m_v.get(i, j); } if (m_hasClass) { // copy class value if applicable newValues[m_outputNumAttributes - 1] = currentInstance.classValue(); } //create new instance with recorded values and add to output dataset Instance newInstance; if (currentInstance instanceof SparseInstance) { newInstance = new SparseInstance(currentInstance.weight(), newValues); } else { newInstance = new DenseInstance(currentInstance.weight(), newValues); } output.add(newInstance); } return output; } /** * Evaluates the merit of a transformed attribute. This is defined * to be the square of the singular value for the latent variable * corresponding to the transformed attribute. * @param att the attribute to be evaluated * @return the merit of a transformed attribute * @throws Exception if attribute can't be evaluated */ public double evaluateAttribute(int att) throws Exception { if (m_s == null) { throw new Exception("Latent Semantic Analysis hasn't been successfully" + " performed yet!"); } //return the square of the corresponding singular value return (m_s.get(att, att) * m_s.get(att, att)) / m_sumSquaredSingularValues; } /** * Transform an instance in original (unnormalized) format * @param instance an instance in the original (unnormalized) format * @return a transformed instance * @throws Exception if instance can't be transformed */ public Instance convertInstance(Instance instance) throws Exception { if (m_s == null) { throw new Exception("convertInstance: Latent Semantic Analysis not " + "performed yet."); } // array to hold new attribute values double [] newValues = new double[m_outputNumAttributes]; // apply filters so new instance is in same format as training instances Instance tempInstance = (Instance)instance.copy(); if (!instance.dataset().equalHeaders(m_trainHeader)) { throw new Exception("Can't convert instance: headers don't match: " + "LatentSemanticAnalysis\n" + instance.dataset().equalHeadersMsg(m_trainHeader)); } // replace missing values m_replaceMissingFilter.input(tempInstance); m_replaceMissingFilter.batchFinished(); tempInstance = m_replaceMissingFilter.output(); // normalize if (m_normalize) { m_normalizeFilter.input(tempInstance); m_normalizeFilter.batchFinished(); tempInstance = m_normalizeFilter.output(); } // convert nominal attributes to binary m_nominalToBinaryFilter.input(tempInstance); m_nominalToBinaryFilter.batchFinished(); tempInstance = m_nominalToBinaryFilter.output(); // remove class/other attributes if (m_attributeFilter != null) { m_attributeFilter.input(tempInstance); m_attributeFilter.batchFinished(); tempInstance = m_attributeFilter.output(); } // record new attribute values if (m_hasClass) { // copy class value newValues[m_outputNumAttributes - 1] = instance.classValue(); } double [][] oldInstanceValues = new double[1][m_numAttributes]; oldInstanceValues[0] = tempInstance.toDoubleArray(); Matrix instanceVector = new Matrix(oldInstanceValues); // old attribute values instanceVector = instanceVector.times(m_transformationMatrix); // new attribute values for (int i = 0; i < m_actualRank; i++) { newValues[i] = instanceVector.get(0, i); } // return newly transformed instance if (instance instanceof SparseInstance) { return new SparseInstance(instance.weight(), newValues); } else { return new DenseInstance(instance.weight(), newValues); } } /** * Returns a description of this attribute transformer * @return a String describing this attribute transformer */ public String toString() { if (m_s == null) { return "Latent Semantic Analysis hasn't been built yet!"; } else { return "\tLatent Semantic Analysis Attribute Transformer\n\n" + lsaSummary(); } } /** * Return a summary of the analysis * @return a summary of the analysis. */ private String lsaSummary() { StringBuffer result = new StringBuffer(); // print number of latent variables used result.append("Number of latent variables utilized: " + m_actualRank); // print singular values result.append("\n\nSingularValue\tLatentVariable#\n"); // create single array of singular values rather than diagonal matrix for (int i = 0; i < m_actualRank; i++) { result.append(Utils.doubleToString(m_s.get(i, i), 9, 5) + "\t" + (i + 1) + "\n"); } // print attribute vectors result.append("\nAttribute vectors (left singular vectors) -- row vectors show\n" + "the relation between the original attributes and the latent \n" + "variables computed by the singular value decomposition:\n"); for (int i = 0; i < m_actualRank; i++) { result.append("LatentVariable#" + (i + 1) + "\t"); } result.append("AttributeName\n"); for (int i = 0; i < m_u.getRowDimension(); i++) { // for each attribute for (int j = 0; j < m_u.getColumnDimension(); j++) { // for each latent variable result.append(Utils.doubleToString(m_u.get(i, j), 9, 5) + "\t\t"); } result.append(m_trainInstances.attribute(i).name() + "\n"); } // print instance vectors result.append("\n\nInstance vectors (right singular vectors) -- column\n" + "vectors show the relation between the original instances and the\n" + "latent variables computed by the singular value decomposition:\n"); for (int i = 0; i < m_numInstances; i++) { result.append("Instance#" + (i + 1) + "\t"); } result.append("LatentVariable#\n"); for (int i = 0; i < m_v.getColumnDimension(); i++) { // for each instance for (int j = 0; j < m_v.getRowDimension(); j++) { // for each latent variable // going down columns instead of across rows because we're // printing v' but have v stored result.append(Utils.doubleToString(m_v.get(j, i), 9, 5) + "\t"); } result.append((i + 1) + "\n"); } return result.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8108 $"); } /** * Main method for testing this class * @param argv should contain the command line arguments to the * evaluator/transformer (see AttributeSelection) */ public static void main(String [] argv) { runEvaluator(new LatentSemanticAnalysis(), argv); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy