All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.attributeSelection.SubsetSizeForwardSelection Maven / Gradle / Ivy

Go to download

Extension of BestFirst. Takes a restricted number of k attributes into account. Fixed-set selects a fixed number k of attributes, whereas k is increased in each step when fixed-width is selected. The search uses either the initial ordering to select the top k attributes, or performs a ranking (with the same evalutator the search uses later on). The search direction can be forward, or floating forward selection (with opitional backward search steps). For more information see: Martin Guetlein (2006). Large Scale Attribute Selection Using Wrappers. Freiburg, Germany.

There is a newer version: 1.0.2
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    SubsetSizeForwardSelection.java
 *    Copyright (C) 2007 Martin Guetlein
 *
 */
package weka.attributeSelection;

import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.Utils;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;

import java.util.BitSet;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;


/**
 
 * SubsetSizeForwardSelection:
*
* Extension of LinearForwardSelection. The search performs an interior cross-validation (seed and number of folds can be specified). A LinearForwardSelection is performed on each foldto determine the optimal subset-size (using the given SubsetSizeEvaluator). Finally, a LinearForwardSelection up to the optimal subset-size is performed on the whole data.
*
* For more information see:
*
* Martin Guetlein (2006). Large Scale Attribute Selection Using Wrappers. Freiburg, Germany. *

* * Valid options are:

* *

 -I
 *  Perform initial ranking to select the
 *  top-ranked attributes.
* *
 -K <num>
 *  Number of top-ranked attributes that are 
 *  taken into account by the search.
* *
 -T <0 = fixed-set | 1 = fixed-width>
 *  Type of Linear Forward Selection (default = 0).
* *
 -S <num>
 *  Size of lookup cache for evaluated subsets.
 *  Expressed as a multiple of the number of
 *  attributes in the data set. (default = 1)
* *
 -E <subset evaluator>
 *  Subset-evaluator used for subset-size determination.-- -M
* *
 -F <num>
 *  Number of cross validation folds
 *  for subset size determination (default = 5).
* *
 -R <num>
 *  Seed for cross validation
 *  subset size determination. (default = 1)
* *
 -Z
 *  verbose on/off
* *
 
 * Options specific to evaluator weka.attributeSelection.ClassifierSubsetEval:
 * 
* *
 -B <classifier>
 *  class name of the classifier to use for accuracy estimation.
 *  Place any classifier options LAST on the command line
 *  following a "--". eg.:
 *   -B weka.classifiers.bayes.NaiveBayes ... -- -K
 *  (default: weka.classifiers.rules.ZeroR)
* *
 -T
 *  Use the training data to estimate accuracy.
* *
 -H <filename>
 *  Name of the hold out/test set to 
 *  estimate accuracy on.
* *
 
 * Options specific to scheme weka.classifiers.rules.ZeroR:
 * 
* *
 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Martin Guetlein ([email protected]) * @version $Revision: 8108 $ */ public class SubsetSizeForwardSelection extends ASSearch implements OptionHandler { /** search directions */ protected static final int TYPE_FIXED_SET = 0; protected static final int TYPE_FIXED_WIDTH = 1; public static final Tag[] TAGS_TYPE = { new Tag(TYPE_FIXED_SET, "Fixed-set"), new Tag(TYPE_FIXED_WIDTH, "Fixed-width"), }; // member variables /** perform initial ranking to select top-ranked attributes */ protected boolean m_performRanking; /** * number of top-ranked attributes that are taken into account for the * search */ protected int m_numUsedAttributes; /** 0 == fixed-set, 1 == fixed-width */ protected int m_linearSelectionType; /** the subset evaluator to use for subset size determination */ private ASEvaluation m_setSizeEval; /** * Number of cross validation folds for subset size determination (default = * 5). */ protected int m_numFolds; /** Seed for cross validation subset size determination. (default = 1) */ protected int m_seed; /** number of attributes in the data */ protected int m_numAttribs; /** total number of subsets evaluated during a search */ protected int m_totalEvals; /** for debugging */ protected boolean m_verbose; /** holds the merit of the best subset found */ protected double m_bestMerit; /** holds the maximum size of the lookup cache for evaluated subsets */ protected int m_cacheSize; /** * Constructor */ public SubsetSizeForwardSelection() { resetOptions(); } /** * Returns a string describing this search method * * @return a description of the search method suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "SubsetSizeForwardSelection:\n\n" + "Extension of LinearForwardSelection. The search performs an interior " + "cross-validation (seed and number of folds can be specified). A " + "LinearForwardSelection is performed on each foldto determine the optimal " + "subset-size (using the given SubsetSizeEvaluator). Finally, a " + "LinearForwardSelection up to the optimal subset-size is performed on " + "the whole data.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Martin Guetlein and Eibe Frank and Mark Hall"); result.setValue(Field.YEAR, "2009"); result.setValue(Field.TITLE, "Large Scale Attribute Selection Using Wrappers"); result.setValue(Field.BOOKTITLE, "Proc IEEE Symposium on Computational Intelligence and Data Mining"); result.setValue(Field.PAGES, "332-339"); result.setValue(Field.PUBLISHER, "IEEE"); additional = result.add(Type.MASTERSTHESIS); additional.setValue(Field.AUTHOR, "Martin Guetlein"); additional.setValue(Field.YEAR, "2006"); additional.setValue(Field.TITLE, "Large Scale Attribute Selection Using Wrappers"); additional.setValue(Field.SCHOOL, "Albert-Ludwigs-Universitaet"); additional.setValue(Field.ADDRESS, "Freiburg, Germany"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. * */ public Enumeration listOptions() { Vector newVector = new Vector(9); newVector.addElement(new Option("\tPerform initial ranking to select the" + "\n\ttop-ranked attributes.", "I", 0, "-I")); newVector.addElement(new Option( "\tNumber of top-ranked attributes that are " + "\n\ttaken into account by the search.", "K", 1, "-K ")); newVector.addElement(new Option( "\tType of Linear Forward Selection (default = 0).", "T", 1, "-T <0 = fixed-set | 1 = fixed-width>")); newVector.addElement(new Option( "\tSize of lookup cache for evaluated subsets." + "\n\tExpressed as a multiple of the number of" + "\n\tattributes in the data set. (default = 1)", "S", 1, "-S ")); newVector.addElement(new Option( "\tSubset-evaluator used for subset-size determination." + "-- -M", "E", 1, "-E ")); newVector.addElement(new Option("\tNumber of cross validation folds" + "\n\tfor subset size determination (default = 5).", "F", 1, "-F ")); newVector.addElement(new Option("\tSeed for cross validation" + "\n\tsubset size determination. (default = 1)", "R", 1, "-R ")); newVector.addElement(new Option("\tverbose on/off", "Z", 0, "-Z")); if ((m_setSizeEval != null) && (m_setSizeEval instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to " + "evaluator " + m_setSizeEval.getClass().getName() + ":")); Enumeration enu = ((OptionHandler) m_setSizeEval).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); } /** * Parses a given list of options. * * Valid options are: *

* * -I
* Perform initial ranking to select top-ranked attributes. *

* * -K
* Number of top-ranked attributes that are taken into account. *

* * -T <0 = fixed-set | 1 = fixed-width>
* Typ of Linear Forward Selection (default = 0). *

* * -S
* Size of lookup cache for evaluated subsets. Expressed as a multiple of * the number of attributes in the data set. (default = 1). *

* * -E
* class name of subset evaluator to use for subset size determination * (default = null, same subset evaluator as for ranking and final forward * selection is used). Place any evaluator options LAST on the command line * following a "--". eg. -A weka.attributeSelection.ClassifierSubsetEval ... -- * -M * *

* * -F
* Number of cross validation folds for subset size determination (default = * 5). *

* * -R
* Seed for cross validation subset size determination. (default = 1) *

* * -Z
* verbose on/off. *

* * @param options * the list of options as an array of strings * @exception Exception * if an option is not supported * */ public void setOptions(String[] options) throws Exception { String optionString; resetOptions(); setPerformRanking(Utils.getFlag('I', options)); optionString = Utils.getOption('K', options); if (optionString.length() != 0) { setNumUsedAttributes(Integer.parseInt(optionString)); } optionString = Utils.getOption('T', options); if (optionString.length() != 0) { setType(new SelectedTag(Integer.parseInt(optionString), TAGS_TYPE)); } else { setType(new SelectedTag(TYPE_FIXED_SET, TAGS_TYPE)); } optionString = Utils.getOption('S', options); if (optionString.length() != 0) { setLookupCacheSize(Integer.parseInt(optionString)); } optionString = Utils.getOption('E', options); if (optionString.length() == 0) { System.out.println( "No subset size evaluator given, using evaluator that is used for final search."); m_setSizeEval = null; } else { setSubsetSizeEvaluator(ASEvaluation.forName(optionString, Utils.partitionOptions(options))); } optionString = Utils.getOption('F', options); if (optionString.length() != 0) { setNumSubsetSizeCVFolds(Integer.parseInt(optionString)); } optionString = Utils.getOption('R', options); if (optionString.length() != 0) { setSeed(Integer.parseInt(optionString)); } m_verbose = Utils.getFlag('Z', options); } /** * Set the maximum size of the evaluated subset cache (hashtable). This is * expressed as a multiplier for the number of attributes in the data set. * (default = 1). * * @param size * the maximum size of the hashtable */ public void setLookupCacheSize(int size) { if (size >= 0) { m_cacheSize = size; } } /** * Return the maximum size of the evaluated subset cache (expressed as a * multiplier for the number of attributes in a data set. * * @return the maximum size of the hashtable. */ public int getLookupCacheSize() { return m_cacheSize; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String lookupCacheSizeTipText() { return "Set the maximum size of the lookup cache of evaluated subsets. This is " + "expressed as a multiplier of the number of attributes in the data set. " + "(default = 1)."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String performRankingTipText() { return "Perform initial ranking to select top-ranked attributes."; } /** * Perform initial ranking to select top-ranked attributes. * * @param b * true if initial ranking should be performed */ public void setPerformRanking(boolean b) { m_performRanking = b; } /** * Get boolean if initial ranking should be performed to select the * top-ranked attributes * * @return true if initial ranking should be performed */ public boolean getPerformRanking() { return m_performRanking; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numUsedAttributesTipText() { return "Set the amount of top-ranked attributes that are taken into account by the search process."; } /** * Set the number of top-ranked attributes that taken into account by the * search process. * * @param k * the number of attributes * @exception Exception * if k is less than 2 */ public void setNumUsedAttributes(int k) throws Exception { if (k < 2) { throw new Exception("Value of -K must be >= 2."); } m_numUsedAttributes = k; } /** * Get the number of top-ranked attributes that taken into account by the * search process. * * @return the number of top-ranked attributes that taken into account */ public int getNumUsedAttributes() { return m_numUsedAttributes; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String typeTipText() { return "Set the type of the search."; } /** * Set the type * * @param t * the Linear Forward Selection type */ public void setType(SelectedTag t) { if (t.getTags() == TAGS_TYPE) { m_linearSelectionType = t.getSelectedTag().getID(); } } /** * Get the type * * @return the Linear Forward Selection type */ public SelectedTag getType() { return new SelectedTag(m_linearSelectionType, TAGS_TYPE); } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String subsetSizeEvaluatorTipText() { return "Subset evaluator to use for subset size determination."; } /** * Set the subset evaluator to use for subset size determination. * * @param eval * the subset evaluator to use for subset size determination. */ public void setSubsetSizeEvaluator(ASEvaluation eval) throws Exception { if (!(eval instanceof SubsetEvaluator)) { throw new Exception(eval.getClass().getName() + " is no subset evaluator."); } m_setSizeEval = eval; } /** * Get the subset evaluator used for subset size determination. * * @return the evaluator used for subset size determination. */ public ASEvaluation getSubsetSizeEvaluator() { return m_setSizeEval; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numSubsetSizeCVFoldsTipText() { return "Number of cross validation folds for subset size determination"; } /** * Set the number of cross validation folds for subset size determination * (default = 5). * * @param f * number of folds */ public void setNumSubsetSizeCVFolds(int f) { m_numFolds = f; } /** * Get the number of cross validation folds for subset size determination * (default = 5). * * @return number of folds */ public int getNumSubsetSizeCVFolds() { return m_numFolds; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "Seed for cross validation subset size determination. (default = 1)"; } /** * Seed for cross validation subset size determination. (default = 1) * * @param s * seed */ public void setSeed(int s) { m_seed = s; } /** * Seed for cross validation subset size determination. (default = 1) * * @return seed */ public int getSeed() { return m_seed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String verboseTipText() { return "Turn on verbose output for monitoring the search's progress."; } /** * Set whether verbose output should be generated. * * @param b * true if output is to be verbose. */ public void setVerbose(boolean b) { m_verbose = b; } /** * Get whether output is to be verbose * * @return true if output will be verbose */ public boolean getVerbose() { return m_verbose; } /** * Gets the current settings of LinearForwardSelection. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions() { String[] evaluatorOptions = new String[0]; if ((m_setSizeEval != null) && (m_setSizeEval instanceof OptionHandler)) { evaluatorOptions = ((OptionHandler) m_setSizeEval).getOptions(); } String[] options = new String[15 + evaluatorOptions.length]; int current = 0; if (m_performRanking) { options[current++] = "-I"; } options[current++] = "-K"; options[current++] = "" + m_numUsedAttributes; options[current++] = "-T"; options[current++] = "" + m_linearSelectionType; options[current++] = "-F"; options[current++] = "" + m_numFolds; options[current++] = "-S"; options[current++] = "" + m_seed; options[current++] = "-Z"; options[current++] = "" + m_verbose; if (m_setSizeEval != null) { options[current++] = "-E"; options[current++] = m_setSizeEval.getClass().getName(); } options[current++] = "--"; System.arraycopy(evaluatorOptions, 0, options, current, evaluatorOptions.length); current += evaluatorOptions.length; while (current < options.length) { options[current++] = ""; } return options; } /** * returns a description of the search as a String * * @return a description of the search */ public String toString() { StringBuffer LFSString = new StringBuffer(); LFSString.append("\tSubset Size Forward Selection.\n"); LFSString.append("\tLinear Forward Selection Type: "); if (m_linearSelectionType == TYPE_FIXED_SET) { LFSString.append("fixed-set\n"); } else { LFSString.append("fixed-width\n"); } LFSString.append("\tNumber of top-ranked attributes that are used: " + m_numUsedAttributes + "\n"); LFSString.append( "\tNumber of cross validation folds for subset size determination: " + m_numFolds + "\n"); LFSString.append("\tSeed for cross validation subset size determination: " + m_seed + "\n"); LFSString.append("\tTotal number of subsets evaluated: " + m_totalEvals + "\n"); LFSString.append("\tMerit of best subset found: " + Utils.doubleToString(Math.abs(m_bestMerit), 8, 3) + "\n"); return LFSString.toString(); } /** * Searches the attribute subset space by subset size forward selection * * @param ASEval * the attribute evaluator to guide the search * @param data * the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @exception Exception * if the search can't be completed */ public int[] search(ASEvaluation ASEval, Instances data) throws Exception { m_totalEvals = 0; if (!(ASEval instanceof SubsetEvaluator)) { throw new Exception(ASEval.getClass().getName() + " is not a " + "Subset evaluator!"); } if (m_setSizeEval == null) { m_setSizeEval = ASEval; } m_numAttribs = data.numAttributes(); if (m_numUsedAttributes > m_numAttribs) { System.out.println( "Decreasing number of top-ranked attributes to total number of attributes: " + data.numAttributes()); m_numUsedAttributes = m_numAttribs; } Instances[] trainData = new Instances[m_numFolds]; Instances[] testData = new Instances[m_numFolds]; LFSMethods[] searchResults = new LFSMethods[m_numFolds]; Random random = new Random(m_seed); Instances dataCopy = new Instances(data); dataCopy.randomize(random); if (dataCopy.classAttribute().isNominal()) { dataCopy.stratify(m_numFolds); } for (int f = 0; f < m_numFolds; f++) { trainData[f] = dataCopy.trainCV(m_numFolds, f, random); testData[f] = dataCopy.testCV(m_numFolds, f); } LFSMethods LSF = new LFSMethods(); int[] ranking; if (m_performRanking) { ASEval.buildEvaluator(data); ranking = LSF.rankAttributes(data, (SubsetEvaluator) ASEval, m_verbose); } else { ranking = new int[m_numAttribs]; for (int i = 0; i < ranking.length; i++) { ranking[i] = i; } } int maxSubsetSize = 0; for (int f = 0; f < m_numFolds; f++) { if (m_verbose) { System.out.println("perform search on internal fold: " + (f + 1) + "/" + m_numFolds); } m_setSizeEval.buildEvaluator(trainData[f]); searchResults[f] = new LFSMethods(); searchResults[f].forwardSearch(m_cacheSize, new BitSet(m_numAttribs), ranking, m_numUsedAttributes, m_linearSelectionType == TYPE_FIXED_WIDTH, 1, -1, trainData[f], (SubsetEvaluator)m_setSizeEval, m_verbose); maxSubsetSize = Math.max(maxSubsetSize, searchResults[f].getBestGroup().cardinality()); } if (m_verbose) { System.out.println( "continue searches on internal folds to maxSubsetSize (" + maxSubsetSize + ")"); } for (int f = 0; f < m_numFolds; f++) { if (m_verbose) { System.out.print("perform search on internal fold: " + (f + 1) + "/" + m_numFolds + " with starting set "); LFSMethods.printGroup(searchResults[f].getBestGroup(), trainData[f].numAttributes()); } if (searchResults[f].getBestGroup().cardinality() < maxSubsetSize) { m_setSizeEval.buildEvaluator(trainData[f]); searchResults[f].forwardSearch(m_cacheSize, searchResults[f].getBestGroup(), ranking, m_numUsedAttributes, m_linearSelectionType == TYPE_FIXED_WIDTH, 1, maxSubsetSize, trainData[f], (SubsetEvaluator)m_setSizeEval, m_verbose); } } double[][] testMerit = new double[m_numFolds][maxSubsetSize + 1]; for (int f = 0; f < m_numFolds; f++) { for (int s = 1; s <= maxSubsetSize; s++) { if (HoldOutSubsetEvaluator.class.isInstance(m_setSizeEval)) { m_setSizeEval.buildEvaluator(trainData[f]); testMerit[f][s] = ((HoldOutSubsetEvaluator) m_setSizeEval).evaluateSubset(searchResults[f].getBestGroupOfSize( s), testData[f]); } else { m_setSizeEval.buildEvaluator(testData[f]); testMerit[f][s] = ((SubsetEvaluator)m_setSizeEval).evaluateSubset(searchResults[f].getBestGroupOfSize( s)); } } } double[] avgTestMerit = new double[maxSubsetSize + 1]; int finalSubsetSize = -1; for (int s = 1; s <= maxSubsetSize; s++) { for (int f = 0; f < m_numFolds; f++) { avgTestMerit[s] = ((avgTestMerit[s] * f) + testMerit[f][s]) / (double) (f + 1); } if ((finalSubsetSize == -1) || (avgTestMerit[s] > avgTestMerit[finalSubsetSize])) { finalSubsetSize = s; } if (m_verbose) { System.out.println("average merit for subset-size " + s + ": " + avgTestMerit[s]); } } if (m_verbose) { System.out.println("performing final forward selection to subset-size: " + finalSubsetSize); } ASEval.buildEvaluator(data); LSF.forwardSearch(m_cacheSize, new BitSet(m_numAttribs), ranking, m_numUsedAttributes, m_linearSelectionType == TYPE_FIXED_WIDTH, 1, finalSubsetSize, data, (SubsetEvaluator) ASEval, m_verbose); m_totalEvals = LSF.getNumEvalsTotal(); m_bestMerit = LSF.getBestMerit(); return attributeList(LSF.getBestGroup()); } /** * Reset options to default values */ protected void resetOptions() { m_performRanking = true; m_numUsedAttributes = 50; m_linearSelectionType = TYPE_FIXED_SET; m_setSizeEval = new ClassifierSubsetEval(); m_numFolds = 5; m_seed = 1; m_totalEvals = 0; m_cacheSize = 1; m_verbose = false; } /** * converts a BitSet into a list of attribute indexes * * @param group * the BitSet to convert * @return an array of attribute indexes */ protected int[] attributeList(BitSet group) { int count = 0; // count how many were selected for (int i = 0; i < m_numAttribs; i++) { if (group.get(i)) { count++; } } int[] list = new int[count]; count = 0; for (int i = 0; i < m_numAttribs; i++) { if (group.get(i)) { list[count++] = i; } } return list; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8108 $"); } }



© 2015 - 2025 Weber Informatics LLC | Privacy Policy