Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MDD.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.mi;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import weka.filters.unsupervised.attribute.Standardize;
/**
* Modified Diverse Density algorithm, with collective
* assumption.
*
* More information about DD:
*
* Oded Maron (1998). Learning from ambiguity.
*
* O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learning.
* Neural Information Processing Systems. 10.
*
*
*
* BibTeX:
*
*
* @phdthesis{Maron1998,
* author = {Oded Maron},
* school = {Massachusetts Institute of Technology},
* title = {Learning from ambiguity},
* year = {1998}
* }
*
* @article{Maron1998,
* author = {O. Maron and T. Lozano-Perez},
* journal = {Neural Information Processing Systems},
* title = {A Framework for Multiple Instance Learning},
* volume = {10},
* year = {1998}
* }
*
*
*
*
* @author Eibe Frank ([email protected])
* @author Xin Xu ([email protected])
* @version $Revision: 10369 $
*/
public class MDD extends AbstractClassifier implements OptionHandler,
MultiInstanceCapabilitiesHandler, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -7273119490545290581L;
/** The index of the class attribute */
protected int m_ClassIndex;
protected double[] m_Par;
/** The number of the class labels */
protected int m_NumClasses;
/** Class labels for each bag */
protected int[] m_Classes;
/** MI data */
protected double[][][] m_Data;
/** All attribute names */
protected Instances m_Attributes;
/** The filter used to standardize/normalize all values. */
protected Filter m_Filter = null;
/** Whether to normalize/standardize/neither, default:standardize */
protected int m_filterType = FILTER_STANDARDIZE;
/** Normalize training data */
public static final int FILTER_NORMALIZE = 0;
/** Standardize training data */
public static final int FILTER_STANDARDIZE = 1;
/** No normalization/standardization */
public static final int FILTER_NONE = 2;
/** The filter to apply to the training data */
public static final Tag[] TAGS_FILTER = {
new Tag(FILTER_NORMALIZE, "Normalize training data"),
new Tag(FILTER_STANDARDIZE, "Standardize training data"),
new Tag(FILTER_NONE, "No normalization/standardization"), };
/** The filter used to get rid of missing values. */
protected ReplaceMissingValues m_Missing = new ReplaceMissingValues();
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "Modified Diverse Density algorithm, with collective assumption.\n\n"
+ "More information about DD:\n\n" + getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.PHDTHESIS);
result.setValue(Field.AUTHOR, "Oded Maron");
result.setValue(Field.YEAR, "1998");
result.setValue(Field.TITLE, "Learning from ambiguity");
result.setValue(Field.SCHOOL, "Massachusetts Institute of Technology");
additional = result.add(Type.ARTICLE);
additional.setValue(Field.AUTHOR, "O. Maron and T. Lozano-Perez");
additional.setValue(Field.YEAR, "1998");
additional.setValue(Field.TITLE,
"A Framework for Multiple Instance Learning");
additional.setValue(Field.JOURNAL, "Neural Information Processing Systems");
additional.setValue(Field.VOLUME, "10");
return result;
}
/**
* Returns an enumeration describing the available options
*
* @return an enumeration of all the available options
*/
@Override
public Enumeration