All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.MIBoost Maven / Gradle / Ivy

Go to download

A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.

The newest version!
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * MIBoost.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Discretize;
import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;

/**
 *  MI AdaBoost method, considers the geometric mean of
 * posterior of instances inside a bag (arithmatic mean of log-posterior) and
 * the expectation for a bag is taken inside the loss function.
*
* For more information about Adaboost, see:
*
* Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. * In: Thirteenth International Conference on Machine Learning, San Francisco, * 148-156, 1996. *

* * * BibTeX: * *

 * @inproceedings{Freund1996,
 *    address = {San Francisco},
 *    author = {Yoav Freund and Robert E. Schapire},
 *    booktitle = {Thirteenth International Conference on Machine Learning},
 *    pages = {148-156},
 *    publisher = {Morgan Kaufmann},
 *    title = {Experiments with a new boosting algorithm},
 *    year = {1996}
 * }
 * 
*

* * * Valid options are: *

* *

 * -B <num>
 *  The number of bins in discretization
 *  (default 0, no discretization)
 * 
* *
 * -R <num>
 *  Maximum number of boost iterations.
 *  (default 10)
 * 
* *
 * -W <class name>
 *  Full name of classifier to boost.
 *  eg: weka.classifiers.bayes.NaiveBayes
 * 
* * * * @author Eibe Frank ([email protected]) * @author Xin Xu ([email protected]) * @version $Revision: 10369 $ */ public class MIBoost extends SingleClassifierEnhancer implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -3808427225599279539L; /** the models for the iterations */ protected Classifier[] m_Models; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** attributes name for the new dataset used to build the model */ protected Instances m_Attributes; /** Number of iterations */ private int m_NumIterations = 100; /** Voting weights of models */ protected double[] m_Beta; /** the maximum number of boost iterations */ protected int m_MaxIterations = 10; /** the number of discretization bins */ protected int m_DiscretizeBin = 0; /** filter used for discretization */ protected Discretize m_Filter = null; /** filter used to convert the MI dataset into single-instance dataset */ protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); /** * Returns a string describing this filter * * @return a description of the filter suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "MI AdaBoost method, considers the geometric mean of posterior " + "of instances inside a bag (arithmatic mean of log-posterior) and " + "the expectation for a bag is taken inside the loss function.\n\n" + "For more information about Adaboost, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire"); result.setValue(Field.TITLE, "Experiments with a new boosting algorithm"); result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning"); result.setValue(Field.YEAR, "1996"); result.setValue(Field.PAGES, "148-156"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); result.setValue(Field.ADDRESS, "San Francisco"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration




© 2015 - 2024 Weber Informatics LLC | Privacy Policy