weka.classifiers.mi.MIOptimalBall Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of multiInstanceLearning Show documentation
Show all versions of multiInstanceLearning Show documentation
A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MIOptimalBall.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.mi;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.matrix.DoubleVector;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.PropositionalToMultiInstance;
import weka.filters.unsupervised.attribute.Standardize;
/**
* This classifier tries to find a suitable ball in
* the multiple-instance space, with a certain data point in the instance space
* as a ball center. The possible ball center is a certain instance in a
* positive bag. The possible radiuses are those which can achieve the highest
* classification accuracy. The model selects the maximum radius as the radius
* of the optimal ball.
*
* For more information about this algorithm, see:
*
* Peter Auer, Ronald Ortner: A Boosting Approach to Multiple Instance Learning.
* In: 15th European Conference on Machine Learning, 63-74, 2004.
*
*
*
* BibTeX:
*
*
* @inproceedings{Auer2004,
* author = {Peter Auer and Ronald Ortner},
* booktitle = {15th European Conference on Machine Learning},
* note = {LNAI 3201},
* pages = {63-74},
* publisher = {Springer},
* title = {A Boosting Approach to Multiple Instance Learning},
* year = {2004}
* }
*
*
*
*
* Valid options are:
*
*
*
* -N <num>
* Whether to 0=normalize/1=standardize/2=neither.
* (default 0=normalize)
*
*
*
*
* @author Lin Dong ([email protected])
* @version $Revision: 10369 $
*/
public class MIOptimalBall extends AbstractClassifier implements OptionHandler,
WeightedInstancesHandler, MultiInstanceCapabilitiesHandler,
TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -6465750129576777254L;
/** center of the optimal ball */
protected double[] m_Center;
/** radius of the optimal ball */
protected double m_Radius;
/** the distances from each instance in a positive bag to each bag */
protected double[][][] m_Distance;
/** The filter used to standardize/normalize all values. */
protected Filter m_Filter = null;
/** Whether to normalize/standardize/neither */
protected int m_filterType = FILTER_NORMALIZE;
/** Normalize training data */
public static final int FILTER_NORMALIZE = 0;
/** Standardize training data */
public static final int FILTER_STANDARDIZE = 1;
/** No normalization/standardization */
public static final int FILTER_NONE = 2;
/** The filter to apply to the training data */
public static final Tag[] TAGS_FILTER = {
new Tag(FILTER_NORMALIZE, "Normalize training data"),
new Tag(FILTER_STANDARDIZE, "Standardize training data"),
new Tag(FILTER_NONE, "No normalization/standardization"), };
/** filter used to convert the MI dataset into single-instance dataset */
protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional();
/** filter used to convert the single-instance dataset into MI dataset */
protected PropositionalToMultiInstance m_ConvertToMI = new PropositionalToMultiInstance();
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "This classifier tries to find a suitable ball in the "
+ "multiple-instance space, with a certain data point in the instance "
+ "space as a ball center. The possible ball center is a certain "
+ "instance in a positive bag. The possible radiuses are those which can "
+ "achieve the highest classification accuracy. The model selects the "
+ "maximum radius as the radius of the optimal ball.\n\n"
+ "For more information about this algorithm, see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.INPROCEEDINGS);
result.setValue(Field.AUTHOR, "Peter Auer and Ronald Ortner");
result.setValue(Field.TITLE,
"A Boosting Approach to Multiple Instance Learning");
result.setValue(Field.BOOKTITLE,
"15th European Conference on Machine Learning");
result.setValue(Field.YEAR, "2004");
result.setValue(Field.PAGES, "63-74");
result.setValue(Field.PUBLISHER, "Springer");
result.setValue(Field.NOTE, "LNAI 3201");
return result;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
@Override
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.RELATIONAL_ATTRIBUTES);
// class
result.enable(Capability.BINARY_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
// other
result.enable(Capability.ONLY_MULTIINSTANCE);
return result;
}
/**
* Returns the capabilities of this multi-instance classifier for the
* relational data.
*
* @return the capabilities of this object
* @see Capabilities
*/
@Override
public Capabilities getMultiInstanceCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable(Capability.DATE_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
// class
result.disableAllClasses();
result.enable(Capability.NO_CLASS);
return result;
}
/**
* Builds the classifier
*
* @param data the training data to be used for generating the boosted
* classifier.
* @throws Exception if the classifier could not be built successfully
*/
@Override
public void buildClassifier(Instances data) throws Exception {
// can classifier handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
Instances train = new Instances(data);
train.deleteWithMissingClass();
int numAttributes = train.attribute(1).relation().numAttributes();
m_Center = new double[numAttributes];
if (getDebug()) {
System.out.println("Start training ...");
}
// convert the training dataset into single-instance dataset
m_ConvertToSI.setInputFormat(train);
train = Filter.useFilter(train, m_ConvertToSI);
if (m_filterType == FILTER_STANDARDIZE) {
m_Filter = new Standardize();
} else if (m_filterType == FILTER_NORMALIZE) {
m_Filter = new Normalize();
} else {
m_Filter = null;
}
if (m_Filter != null) {
// normalize/standardize the converted training dataset
m_Filter.setInputFormat(train);
train = Filter.useFilter(train, m_Filter);
}
// convert the single-instance dataset into multi-instance dataset
m_ConvertToMI.setInputFormat(train);
train = Filter.useFilter(train, m_ConvertToMI);
/*
* calculate all the distances (and store them in m_Distance[][][]), which
* are from each instance in all positive bags to all bags
*/
calculateDistance(train);
/*
* find the suitable ball center (m_Center) and the corresponding radius
* (m_Radius)
*/
findRadius(train);
if (getDebug()) {
System.out.println("Finish building optimal ball model");
}
}
/**
* calculate the distances from each instance in a positive bag to each bag.
* All result distances are stored in m_Distance[i][j][k], where
* m_Distance[i][j][k] refers the distances from the jth instance in ith bag
* to the kth bag
*
* @param train the multi-instance dataset (with relational attribute)
*/
public void calculateDistance(Instances train) {
int numBags = train.numInstances();
int numInstances;
Instance tempCenter;
m_Distance = new double[numBags][][];
for (int i = 0; i < numBags; i++) {
if (train.instance(i).classValue() == 1.0) { // positive bag
numInstances = train.instance(i).relationalValue(1).numInstances();
m_Distance[i] = new double[numInstances][];
for (int j = 0; j < numInstances; j++) {
tempCenter = train.instance(i).relationalValue(1).instance(j);
m_Distance[i][j] = new double[numBags]; // store the distance from one
// center to all the bags
for (int k = 0; k < numBags; k++) {
if (i == k) {
m_Distance[i][j][k] = 0;
} else {
m_Distance[i][j][k] = minBagDistance(tempCenter,
train.instance(k));
}
}
}
}
}
}
/**
* Calculate the distance from one data point to a bag
*
* @param center the data point in instance space
* @param bag the bag
* @return the double value as the distance.
*/
public double minBagDistance(Instance center, Instance bag) {
double distance;
double minDistance = Double.MAX_VALUE;
Instances temp = bag.relationalValue(1);
// calculate the distance from the data point to each instance in the bag
// and return the minimum distance
for (int i = 0; i < temp.numInstances(); i++) {
distance = 0;
for (int j = 0; j < center.numAttributes(); j++) {
distance += (center.value(j) - temp.instance(i).value(j))
* (center.value(j) - temp.instance(i).value(j));
}
if (minDistance > distance) {
minDistance = distance;
}
}
return Math.sqrt(minDistance);
}
/**
* Find the maximum radius for the optimal ball.
*
* @param train the multi-instance data
*/
public void findRadius(Instances train) {
int numBags, numInstances;
double radius, bagDistance;
int highestCount = 0;
numBags = train.numInstances();
// try each instance in all positive bag as a ball center (tempCenter),
for (int i = 0; i < numBags; i++) {
if (train.instance(i).classValue() == 1.0) {// positive bag
numInstances = train.instance(i).relationalValue(1).numInstances();
for (int j = 0; j < numInstances; j++) {
Instance tempCenter = train.instance(i).relationalValue(1)
.instance(j);
// set the possible set of ball radius corresponding to each
// tempCenter,
double sortedDistance[] = sortArray(m_Distance[i][j]); // sort the
// distance
// value
for (int k = 1; k < sortedDistance.length; k++) {
radius = sortedDistance[k]
- (sortedDistance[k] - sortedDistance[k - 1]) / 2.0;
// evaluate the performance on the training data according to
// the curren selected tempCenter and the set of radius
int correctCount = 0;
for (int n = 0; n < numBags; n++) {
bagDistance = m_Distance[i][j][n];
if ((bagDistance <= radius && train.instance(n).classValue() == 1.0)
|| (bagDistance > radius && train.instance(n).classValue() == 0.0)) {
correctCount += train.instance(n).weight();
}
}
// and keep the track of the ball center and the maximum radius
// which can achieve the highest accuracy.
if (correctCount > highestCount
|| (correctCount == highestCount && radius > m_Radius)) {
highestCount = correctCount;
m_Radius = radius;
for (int p = 0; p < tempCenter.numAttributes(); p++) {
m_Center[p] = tempCenter.value(p);
}
}
}
}
}
}
}
/**
* Sort the array.
*
* @param distance the array need to be sorted
* @return sorted array
*/
public double[] sortArray(double[] distance) {
double[] sorted = new double[distance.length];
// make a copy of the array
double[] disCopy = new double[distance.length];
for (int i = 0; i < distance.length; i++) {
disCopy[i] = distance[i];
}
DoubleVector sortVector = new DoubleVector(disCopy);
sortVector.sort();
sorted = sortVector.getArrayCopy();
return sorted;
}
/**
* Computes the distribution for a given multiple instance
*
* @param newBag the instance for which distribution is computed
* @return the distribution
* @throws Exception if the distribution can't be computed successfully
*/
@Override
public double[] distributionForInstance(Instance newBag) throws Exception {
double[] distribution = new double[2];
double distance;
distribution[0] = 0;
distribution[1] = 0;
Instances insts = new Instances(newBag.dataset(), 0);
insts.add(newBag);
// Filter instances
insts = Filter.useFilter(insts, m_ConvertToSI);
if (m_Filter != null) {
insts = Filter.useFilter(insts, m_Filter);
}
// calculate the distance from each single instance to the ball center
int numInsts = insts.numInstances();
insts.deleteAttributeAt(0); // remove the bagIndex attribute, no use for the
// distance calculation
for (int i = 0; i < numInsts; i++) {
distance = 0;
for (int j = 0; j < insts.numAttributes() - 1; j++) {
distance += (insts.instance(i).value(j) - m_Center[j])
* (insts.instance(i).value(j) - m_Center[j]);
}
if (distance <= m_Radius * m_Radius) { // check whether this single
// instance is inside the ball
distribution[1] = 1.0; // predicted as a positive bag
break;
}
}
distribution[0] = 1 - distribution[1];
return distribution;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration