Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MIWrapper.java
* Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.mi;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;
/**
* A simple Wrapper method for applying standard
* propositional learners to multi-instance data.
*
* For more information see:
*
* E. T. Frank, X. Xu (2003). Applying propositional learning algorithms to
* multi-instance data. Department of Computer Science, University of Waikato,
* Hamilton, NZ.
*
*
*
* BibTeX:
*
*
* @techreport{Frank2003,
* address = {Department of Computer Science, University of Waikato, Hamilton, NZ},
* author = {E. T. Frank and X. Xu},
* institution = {University of Waikato},
* month = {06},
* title = {Applying propositional learning algorithms to multi-instance data},
* year = {2003}
* }
*
*
*
*
* Valid options are:
*
*
*
* -P [1|2|3]
* The method used in testing:
* 1.arithmetic average
* 2.geometric average
* 3.max probability of positive bag.
* (default: 1)
*
*
*
* -A [0|1|2|3]
* The type of weight setting for each single-instance:
* 0.keep the weight to be the same as the original value;
* 1.weight = 1.0
* 2.weight = 1.0/Total number of single-instance in the
* corresponding bag
* 3. weight = Total number of single-instance / (Total
* number of bags * Total number of single-instance
* in the corresponding bag).
* (default: 3)
*
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
*
* -W
* Full name of base classifier.
* (default: weka.classifiers.rules.ZeroR)
*
*
*
* Options specific to classifier weka.classifiers.rules.ZeroR:
*
*
*
* -D
* If set, classifier is run in debug mode and
* may output additional info to the console
*
*
*
*
* @author Eibe Frank ([email protected])
* @author Xin Xu ([email protected])
* @version $Revision: 10369 $
*/
public class MIWrapper extends SingleClassifierEnhancer implements
MultiInstanceCapabilitiesHandler, OptionHandler, TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -7707766152904315910L;
/** The number of the class labels */
protected int m_NumClasses;
/** arithmetic average */
public static final int TESTMETHOD_ARITHMETIC = 1;
/** geometric average */
public static final int TESTMETHOD_GEOMETRIC = 2;
/** max probability of positive bag */
public static final int TESTMETHOD_MAXPROB = 3;
/** the test methods */
public static final Tag[] TAGS_TESTMETHOD = {
new Tag(TESTMETHOD_ARITHMETIC, "arithmetic average"),
new Tag(TESTMETHOD_GEOMETRIC, "geometric average"),
new Tag(TESTMETHOD_MAXPROB, "max probability of positive bag") };
/** the test method */
protected int m_Method = TESTMETHOD_GEOMETRIC;
/** Filter used to convert MI dataset into single-instance dataset */
protected MultiInstanceToPropositional m_ConvertToProp = new MultiInstanceToPropositional();
/** the single-instance weight setting method */
protected int m_WeightMethod = MultiInstanceToPropositional.WEIGHTMETHOD_INVERSE2;
/**
* Returns a string describing this filter
*
* @return a description of the filter suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "A simple Wrapper method for applying standard propositional learners "
+ "to multi-instance data.\n\n"
+ "For more information see:\n\n"
+ getTechnicalInformation().toString();
}
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
result = new TechnicalInformation(Type.TECHREPORT);
result.setValue(Field.AUTHOR, "E. T. Frank and X. Xu");
result.setValue(Field.TITLE,
"Applying propositional learning algorithms to multi-instance data");
result.setValue(Field.YEAR, "2003");
result.setValue(Field.MONTH, "06");
result.setValue(Field.INSTITUTION, "University of Waikato");
result.setValue(Field.ADDRESS,
"Department of Computer Science, University of Waikato, Hamilton, NZ");
return result;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration