All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.SimpleMI Maven / Gradle / Ivy

Go to download

A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.

The newest version!
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * SimpleMI.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.mi;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.SingleClassifierEnhancer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.Utils;

/**
 *  Reduces MI data into mono-instance data.
 * 

* * * Valid options are: *

* *

 * -M [1|2|3]
 *  The method used in transformation:
 *  1.arithmatic average; 2.geometric centor;
 *  3.using minimax combined features of a bag (default: 1)
 * 
 *  Method 3:
 *  Define s to be the vector of the coordinate-wise maxima
 *  and minima of X, ie., 
 *  s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform
 *  the exemplars into mono-instance which contains attributes
 *  s(X)
 * 
* *
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* *
 * -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.rules.ZeroR)
 * 
* *
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * 
* *
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * 
* * * * @author Eibe Frank ([email protected]) * @author Xin Xu ([email protected]) * @author Lin Dong ([email protected]) * @version $Revision: 10369 $ */ public class SimpleMI extends SingleClassifierEnhancer implements OptionHandler, MultiInstanceCapabilitiesHandler { /** for serialization */ static final long serialVersionUID = 9137795893666592662L; /** arithmetic average */ public static final int TRANSFORMMETHOD_ARITHMETIC = 1; /** geometric average */ public static final int TRANSFORMMETHOD_GEOMETRIC = 2; /** using minimax combined features of a bag */ public static final int TRANSFORMMETHOD_MINIMAX = 3; /** the transformation methods */ public static final Tag[] TAGS_TRANSFORMMETHOD = { new Tag(TRANSFORMMETHOD_ARITHMETIC, "arithmetic average"), new Tag(TRANSFORMMETHOD_GEOMETRIC, "geometric average"), new Tag(TRANSFORMMETHOD_MINIMAX, "using minimax combined features of a bag") }; /** the method used in transformation */ protected int m_TransformMethod = TRANSFORMMETHOD_ARITHMETIC; /** * Returns a string describing this filter * * @return a description of the filter suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Reduces MI data into mono-instance data."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ @Override public Enumeration




© 2015 - 2024 Weber Informatics LLC | Privacy Policy