All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.TLDSimple Maven / Gradle / Ivy

Go to download

A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.

The newest version!
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * TLDSimple.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.RandomizableClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;

/**
 *  A simpler version of TLD, mu random but sigma^2
 * fixed and estimated via data.
*
* For more information see:
*
* Xin Xu (2003). Statistical learning in multiple instance problem. Hamilton, * NZ. *

* * * BibTeX: * *

 * @mastersthesis{Xu2003,
 *    address = {Hamilton, NZ},
 *    author = {Xin Xu},
 *    note = {0657.594},
 *    school = {University of Waikato},
 *    title = {Statistical learning in multiple instance problem},
 *    year = {2003}
 * }
 * 
*

* * * Valid options are: *

* *

 * -C
 *  Set whether or not use empirical
 *  log-odds cut-off instead of 0
 * 
* *
 * -R <numOfRuns>
 *  Set the number of multiple runs 
 *  needed for searching the MLE.
 * 
* *
 * -S <num>
 *  Random number seed.
 *  (default 1)
 * 
* * * * @author Eibe Frank ([email protected]) * @author Xin Xu ([email protected]) * @version $Revision: 10369 $ */ public class TLDSimple extends RandomizableClassifier implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 9040995947243286591L; /** The mean for each attribute of each positive exemplar */ protected double[][] m_MeanP = null; /** The mean for each attribute of each negative exemplar */ protected double[][] m_MeanN = null; /** The effective sum of weights of each positive exemplar in each dimension */ protected double[][] m_SumP = null; /** The effective sum of weights of each negative exemplar in each dimension */ protected double[][] m_SumN = null; /** Estimated sigma^2 in positive bags */ protected double[] m_SgmSqP; /** Estimated sigma^2 in negative bags */ protected double[] m_SgmSqN; /** The parameters to be estimated for each positive exemplar */ protected double[] m_ParamsP = null; /** The parameters to be estimated for each negative exemplar */ protected double[] m_ParamsN = null; /** The dimension of each exemplar, i.e. (numAttributes-2) */ protected int m_Dimension = 0; /** The class label of each exemplar */ protected double[] m_Class = null; /** The number of class labels in the data */ protected int m_NumClasses = 2; /** The very small number representing zero */ static public double ZERO = 1.0e-12; protected int m_Run = 1; protected double m_Cutoff; protected boolean m_UseEmpiricalCutOff = false; private double[] m_LkRatio; private Instances m_Attribute = null; /** * Returns a string describing this filter * * @return a description of the filter suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "A simpler version of TLD, mu random but sigma^2 fixed and estimated " + "via data.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.MASTERSTHESIS); result.setValue(Field.AUTHOR, "Xin Xu"); result.setValue(Field.YEAR, "2003"); result.setValue(Field.TITLE, "Statistical learning in multiple instance problem"); result.setValue(Field.SCHOOL, "University of Waikato"); result.setValue(Field.ADDRESS, "Hamilton, NZ"); result.setValue(Field.NOTE, "0657.594"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); // class result.enable(Capability.BINARY_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance classifier for the * relational data. * * @return the capabilities of this object * @see Capabilities */ @Override public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * * @param exs the training exemplars * @throws Exception if the model cannot be built properly */ @Override public void buildClassifier(Instances exs) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(exs); // remove instances with missing class exs = new Instances(exs); exs.deleteWithMissingClass(); int numegs = exs.numInstances(); m_Dimension = exs.attribute(1).relation().numAttributes(); m_Attribute = exs.attribute(1).relation().stringFreeStructure(); Instances pos = new Instances(exs, 0), neg = new Instances(exs, 0); // Divide into two groups for (int u = 0; u < numegs; u++) { Instance example = exs.instance(u); if (example.classValue() == 1) { pos.add(example); } else { neg.add(example); } } int pnum = pos.numInstances(), nnum = neg.numInstances(); // xBar, n m_MeanP = new double[pnum][m_Dimension]; m_SumP = new double[pnum][m_Dimension]; m_MeanN = new double[nnum][m_Dimension]; m_SumN = new double[nnum][m_Dimension]; // w, m m_ParamsP = new double[2 * m_Dimension]; m_ParamsN = new double[2 * m_Dimension]; // \sigma^2 m_SgmSqP = new double[m_Dimension]; m_SgmSqN = new double[m_Dimension]; // S^2 double[][] varP = new double[pnum][m_Dimension], varN = new double[nnum][m_Dimension]; // numOfEx 'e' without all missing double[] effNumExP = new double[m_Dimension], effNumExN = new double[m_Dimension]; // For the starting values double[] pMM = new double[m_Dimension], nMM = new double[m_Dimension], pVM = new double[m_Dimension], nVM = new double[m_Dimension]; // # of exemplars with only one instance double[] numOneInsExsP = new double[m_Dimension], numOneInsExsN = new double[m_Dimension]; // sum_i(1/n_i) double[] pInvN = new double[m_Dimension], nInvN = new double[m_Dimension]; // Extract metadata from both positive and negative bags for (int v = 0; v < pnum; v++) { // Instance px = pos.instance(v); Instances pxi = pos.instance(v).relationalValue(1); for (int k = 0; k < pxi.numAttributes(); k++) { m_MeanP[v][k] = pxi.meanOrMode(k); varP[v][k] = pxi.variance(k); } for (int w = 0, t = 0; w < m_Dimension; w++, t++) { // if((t==m_ClassIndex) || (t==m_IdIndex)) // t++; if (varP[v][w] <= 0.0) { varP[v][w] = 0.0; } if (!Double.isNaN(m_MeanP[v][w])) { for (int u = 0; u < pxi.numInstances(); u++) { if (!pxi.instance(u).isMissing(t)) { m_SumP[v][w] += pxi.instance(u).weight(); } } pMM[w] += m_MeanP[v][w]; pVM[w] += m_MeanP[v][w] * m_MeanP[v][w]; if ((m_SumP[v][w] > 1) && (varP[v][w] > ZERO)) { m_SgmSqP[w] += varP[v][w] * (m_SumP[v][w] - 1.0) / m_SumP[v][w]; // m_SgmSqP[w] += varP[v][w]*(m_SumP[v][w]-1.0); effNumExP[w]++; // Not count exemplars with 1 instance pInvN[w] += 1.0 / m_SumP[v][w]; // pInvN[w] += m_SumP[v][w]; } else { numOneInsExsP[w]++; } } } } for (int v = 0; v < nnum; v++) { // Instance nx = neg.instance(v); Instances nxi = neg.instance(v).relationalValue(1); for (int k = 0; k < nxi.numAttributes(); k++) { m_MeanN[v][k] = nxi.meanOrMode(k); varN[v][k] = nxi.variance(k); } // Instances nxi = nx.getInstances(); for (int w = 0, t = 0; w < m_Dimension; w++, t++) { // if((t==m_ClassIndex) || (t==m_IdIndex)) // t++; if (varN[v][w] <= 0.0) { varN[v][w] = 0.0; } if (!Double.isNaN(m_MeanN[v][w])) { for (int u = 0; u < nxi.numInstances(); u++) { if (!nxi.instance(u).isMissing(t)) { m_SumN[v][w] += nxi.instance(u).weight(); } } nMM[w] += m_MeanN[v][w]; nVM[w] += m_MeanN[v][w] * m_MeanN[v][w]; if ((m_SumN[v][w] > 1) && (varN[v][w] > ZERO)) { m_SgmSqN[w] += varN[v][w] * (m_SumN[v][w] - 1.0) / m_SumN[v][w]; // m_SgmSqN[w] += varN[v][w]*(m_SumN[v][w]-1.0); effNumExN[w]++; // Not count exemplars with 1 instance nInvN[w] += 1.0 / m_SumN[v][w]; // nInvN[w] += m_SumN[v][w]; } else { numOneInsExsN[w]++; } } } } // Expected \sigma^2 /* * if m_SgmSqP[u] or m_SgmSqN[u] is 0, assign 0 to sigma^2. Otherwise, may * cause k m_SgmSqP / m_SgmSqN to be NaN. Modified by Lin Dong (Sep. 2005) */ for (int u = 0; u < m_Dimension; u++) { // For exemplars with only one instance, use avg(\sigma^2) of other // exemplars if (m_SgmSqP[u] != 0) { m_SgmSqP[u] /= (effNumExP[u] - pInvN[u]); } else { m_SgmSqP[u] = 0; } if (m_SgmSqN[u] != 0) { m_SgmSqN[u] /= (effNumExN[u] - nInvN[u]); } else { m_SgmSqN[u] = 0; } // m_SgmSqP[u] /= (pInvN[u]-effNumExP[u]); // m_SgmSqN[u] /= (nInvN[u]-effNumExN[u]); effNumExP[u] += numOneInsExsP[u]; effNumExN[u] += numOneInsExsN[u]; pMM[u] /= effNumExP[u]; nMM[u] /= effNumExN[u]; pVM[u] = pVM[u] / (effNumExP[u] - 1.0) - pMM[u] * pMM[u] * effNumExP[u] / (effNumExP[u] - 1.0); nVM[u] = nVM[u] / (effNumExN[u] - 1.0) - nMM[u] * nMM[u] * effNumExN[u] / (effNumExN[u] - 1.0); } // Bounds and parameter values for each run double[][] bounds = new double[2][2]; double[] pThisParam = new double[2], nThisParam = new double[2]; // Initial values for parameters double w, m; Random whichEx = new Random(m_Seed); // Optimize for one dimension for (int x = 0; x < m_Dimension; x++) { // System.out.println("\n\n!!!!!!!!!!!!!!!!!!!!!!???Dimension #"+x); // Positive examplars: first run pThisParam[0] = pVM[x]; // w if (pThisParam[0] <= ZERO) { pThisParam[0] = 1.0; } pThisParam[1] = pMM[x]; // m // Negative examplars: first run nThisParam[0] = nVM[x]; // w if (nThisParam[0] <= ZERO) { nThisParam[0] = 1.0; } nThisParam[1] = nMM[x]; // m // Bound constraints bounds[0][0] = ZERO; // w > 0 bounds[0][1] = Double.NaN; bounds[1][0] = Double.NaN; bounds[1][1] = Double.NaN; double pminVal = Double.MAX_VALUE, nminVal = Double.MAX_VALUE; TLDSimple_Optm pOp = null, nOp = null; boolean isRunValid = true; double[] sumP = new double[pnum], meanP = new double[pnum]; double[] sumN = new double[nnum], meanN = new double[nnum]; // One dimension for (int p = 0; p < pnum; p++) { sumP[p] = m_SumP[p][x]; meanP[p] = m_MeanP[p][x]; } for (int q = 0; q < nnum; q++) { sumN[q] = m_SumN[q][x]; meanN[q] = m_MeanN[q][x]; } for (int y = 0; y < m_Run; y++) { // System.out.println("\n\n!!!!!!!!!Positive exemplars: Run #"+y); double thisMin; pOp = new TLDSimple_Optm(); pOp.setNum(sumP); pOp.setSgmSq(m_SgmSqP[x]); if (getDebug()) { System.out.println("m_SgmSqP[" + x + "]= " + m_SgmSqP[x]); } pOp.setXBar(meanP); // pOp.setDebug(true); pThisParam = pOp.findArgmin(pThisParam, bounds); while (pThisParam == null) { pThisParam = pOp.getVarbValues(); if (getDebug()) { System.out.println("!!! 200 iterations finished, not enough!"); } pThisParam = pOp.findArgmin(pThisParam, bounds); } thisMin = pOp.getMinFunction(); if (!Double.isNaN(thisMin) && (thisMin < pminVal)) { pminVal = thisMin; for (int z = 0; z < 2; z++) { m_ParamsP[2 * x + z] = pThisParam[z]; } } if (Double.isNaN(thisMin)) { pThisParam = new double[2]; isRunValid = false; } if (!isRunValid) { y--; isRunValid = true; } // Change the initial parameters and restart int pone = whichEx.nextInt(pnum); // Positive exemplars: next run while (Double.isNaN(m_MeanP[pone][x])) { pone = whichEx.nextInt(pnum); } m = m_MeanP[pone][x]; w = (m - pThisParam[1]) * (m - pThisParam[1]); pThisParam[0] = w; // w pThisParam[1] = m; // m } for (int y = 0; y < m_Run; y++) { // System.out.println("\n\n!!!!!!!!!Negative exemplars: Run #"+y); double thisMin; nOp = new TLDSimple_Optm(); nOp.setNum(sumN); nOp.setSgmSq(m_SgmSqN[x]); if (getDebug()) { System.out.println(m_SgmSqN[x]); } nOp.setXBar(meanN); // nOp.setDebug(true); nThisParam = nOp.findArgmin(nThisParam, bounds); while (nThisParam == null) { nThisParam = nOp.getVarbValues(); if (getDebug()) { System.out.println("!!! 200 iterations finished, not enough!"); } nThisParam = nOp.findArgmin(nThisParam, bounds); } thisMin = nOp.getMinFunction(); if (!Double.isNaN(thisMin) && (thisMin < nminVal)) { nminVal = thisMin; for (int z = 0; z < 2; z++) { m_ParamsN[2 * x + z] = nThisParam[z]; } } if (Double.isNaN(thisMin)) { nThisParam = new double[2]; isRunValid = false; } if (!isRunValid) { y--; isRunValid = true; } // Change the initial parameters and restart int none = whichEx.nextInt(nnum);// Randomly pick one pos. exmpl. // Negative exemplars: next run while (Double.isNaN(m_MeanN[none][x])) { none = whichEx.nextInt(nnum); } m = m_MeanN[none][x]; w = (m - nThisParam[1]) * (m - nThisParam[1]); nThisParam[0] = w; // w nThisParam[1] = m; // m } } m_LkRatio = new double[m_Dimension]; if (m_UseEmpiricalCutOff) { // Find the empirical cut-off double[] pLogOdds = new double[pnum], nLogOdds = new double[nnum]; for (int p = 0; p < pnum; p++) { pLogOdds[p] = likelihoodRatio(m_SumP[p], m_MeanP[p]); } for (int q = 0; q < nnum; q++) { nLogOdds[q] = likelihoodRatio(m_SumN[q], m_MeanN[q]); } // Update m_Cutoff findCutOff(pLogOdds, nLogOdds); } else { m_Cutoff = -Math.log((double) pnum / (double) nnum); } /* * for(int x=0, y=0; x= neg[nOrder[n]]); n++, fstAccu++) { ; } if (n >= nNum) { // totally seperate m_Cutoff = (neg[nOrder[nNum - 1]] + pos[pOrder[0]]) / 2.0; // m_Cutoff = neg[nOrder[nNum-1]]; return; } // count=n; NOT USED while ((p < pNum) && (n < nNum)) { // Compare the next in the two lists if (pos[pOrder[p]] >= neg[nOrder[n]]) { // Neg has less log-odds fstAccu += 1.0; split = neg[nOrder[n]]; n++; } else { sndAccu -= 1.0; split = pos[pOrder[p]]; p++; } // count++; NOT USED /* * double entropy=0.0, cover=(double)count; if(fstAccu>0.0) entropy -= * fstAccu*Math.log(fstAccu/cover); if(sndAccu>0.0) entropy -= * sndAccu*Math.log(sndAccu/(total-cover)); * * if(entropy < minEntropy){ minEntropy = entropy; //find the next * smallest //double next = neg[nOrder[n]]; * //if(pos[pOrder[p]] maxAccu) || ((fstAccu + sndAccu == maxAccu) && (Math.abs(split) < minDistTo0))) { maxAccu = fstAccu + sndAccu; m_Cutoff = split; minDistTo0 = Math.abs(split); } } } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration




© 2015 - 2024 Weber Informatics LLC | Privacy Policy