All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.mi.supportVector.MIRBFKernel Maven / Gradle / Ivy

Go to download

A collection of multi-instance learning classifiers. Includes the Citation KNN method, several variants of the diverse density method, support vector machines for multi-instance learning, simple wrappers for applying standard propositional learners to multi-instance data, decision tree and rule learners, and some other methods.

The newest version!
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * MIRBFKernel.java
 * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.mi.supportVector;

import weka.classifiers.functions.supportVector.RBFKernel;
import weka.core.Capabilities;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.MultiInstanceCapabilitiesHandler;
import weka.core.RevisionUtils;
import weka.core.Capabilities.Capability;

/**
 
 * The RBF kernel. K(x, y) = e^-(gamma * <x-y, x-y>^2)
 * 

* * Valid options are:

* *

 -D
 *  Enables debugging output (if available) to be printed.
 *  (default: off)
* *
 -no-checks
 *  Turns off all checks - use with caution!
 *  (default: checks on)
* *
 -C <num>
 *  The size of the cache (a prime number), 0 for full cache and 
 *  -1 to turn it off.
 *  (default: 250007)
* *
 -G <num>
 *  The Gamma parameter.
 *  (default: 0.01)
* * * @author Eibe Frank ([email protected]) * @author Shane Legg ([email protected]) (sparse vector code) * @author Stuart Inglis ([email protected]) (sparse vector code) * @author J. Lindgren (jtlindgr{at}cs.helsinki.fi) (RBF kernel) * @author Lin Dong ([email protected]) (MIkernel) * @version $Revision: 9142 $ */ public class MIRBFKernel extends RBFKernel implements MultiInstanceCapabilitiesHandler { /** for serialiation */ private static final long serialVersionUID = -8711882393708956962L; /** The precalculated dotproducts of <inst_i,inst_i> */ protected double m_kernelPrecalc[][]; /** * default constructor - does nothing. */ public MIRBFKernel() { super(); } /** * Constructor. * * @param data the data to use * @param cacheSize the size of the cache * @param gamma the bandwidth * @throws Exception if something goes wrong */ public MIRBFKernel(Instances data, int cacheSize, double gamma) throws Exception { super(data, cacheSize, gamma); } /** * * @param id1 the index of instance 1 * @param id2 the index of instance 2 * @param inst1 the instance 1 object * @return the dot product * @throws Exception if something goes wrong */ protected double evaluate(int id1, int id2, Instance inst1) throws Exception { double result = 0; Instances insts1, insts2; if (id1 == -1) insts1 = new Instances(inst1.relationalValue(1)); else insts1 = new Instances(m_data.instance(id1).relationalValue(1)); insts2 = new Instances (m_data.instance(id2).relationalValue(1)); double precalc1=0; for(int i = 0; i < insts1.numInstances(); i++){ for (int j = 0; j < insts2.numInstances(); j++){ if (id1 == -1) precalc1 = dotProd(insts1.instance(i), insts1.instance(i)); else precalc1 = m_kernelPrecalc[id1][i]; double res = Math.exp(m_gamma*(2. * dotProd(insts1.instance(i), insts2.instance(j)) -precalc1 - m_kernelPrecalc[id2][j] ) ); result += res; } } return result; } /** * initializes variables etc. * * @param data the data to use */ protected void initVars(Instances data) { super.initVars(data); m_kernelPrecalc = new double[data.numInstances()][]; } /** * Returns the Capabilities of this kernel. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.RELATIONAL_ATTRIBUTES); result.disable(Capability.MISSING_VALUES); // class result.enableAllClasses(); // other result.enable(Capability.ONLY_MULTIINSTANCE); return result; } /** * Returns the capabilities of this multi-instance kernel for the * relational data. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getMultiInstanceCapabilities() { Capabilities result = super.getCapabilities(); // class result.disableAllClasses(); result.enable(Capability.NO_CLASS); return result; } /** * builds the kernel with the given data. Initializes the kernel cache. * The actual size of the cache in bytes is (64 * cacheSize). * * @param data the data to base the kernel on * @throws Exception if something goes wrong */ public void buildKernel(Instances data) throws Exception { // does kernel handle the data? if (!getChecksTurnedOff()) getCapabilities().testWithFail(data); initVars(data); for (int i = 0; i < data.numInstances(); i++){ Instances insts = new Instances(data.instance(i).relationalValue(1)); m_kernelPrecalc[i] = new double [insts.numInstances()]; for (int j = 0; j < insts.numInstances(); j++) m_kernelPrecalc[i][j] = dotProd(insts.instance(j), insts.instance(j)); } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 9142 $"); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy