weka.classifiers.timeseries.eval.MAPEModule Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of timeseriesForecasting Show documentation
Show all versions of timeseriesForecasting Show documentation
Provides a time series forecasting environment for Weka. Includes a wrapper for Weka regression schemes that automates the process of creating lagged variables and date-derived periodic variables and provides the ability to do closed-loop forecasting. New evaluation routines are provided by a special evaluation module and graphing of predictions/forecasts are provided via the JFreeChart library. Includes both command-line and GUI user interfaces. Sample time series data can be found in ${WEKA_HOME}/packages/timeseriesForecasting/sample-data.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* MAPEModule.java
* Copyright (C) 2010-2016 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.timeseries.eval;
import java.util.List;
import weka.classifiers.evaluation.NumericPrediction;
import weka.core.Utils;
/**
* Computes the mean absolute percentage error
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 46478 $
*/
public class MAPEModule extends ErrorModule {
public String getEvalName() {
return "MAPE";
}
public String getDescription() {
return "Mean absolute percentage error";
}
public String getDefinition() {
return "sum(abs((predicted - actual) / actual)) / N";
}
public double[] calculateMeasure() throws Exception {
double[] result = new double[m_targetFieldNames.size()];
for (int i = 0; i < result.length; i++) {
result[i] = Utils.missingValue();
}
for (int i = 0; i < m_targetFieldNames.size(); i++) {
double sumAbs = 0;
List preds = m_predictions.get(i);
int count = 0;
for (NumericPrediction p : preds) {
if (!Utils.isMissingValue(p.error()) && Math.abs(p.actual()) > 0) {
sumAbs += Math.abs(p.error() / p.actual());
count++;
}
}
/*if (m_counts[i] > 0) {
sumAbs /= m_counts[i];
}*/
if (count > 0) {
sumAbs /= count;
result[i] = sumAbs * 100.0;
} else {
result[i] = Utils.missingValue();
}
}
return result;
}
}