weka.gui.knowledgeflow.TimeSeriesPerspective Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of timeseriesForecasting Show documentation
Show all versions of timeseriesForecasting Show documentation
Provides a time series forecasting environment for Weka. Includes a wrapper for Weka regression schemes that automates the process of creating lagged variables and date-derived periodic variables and provides the ability to do closed-loop forecasting. New evaluation routines are provided by a special evaluation module and graphing of predictions/forecasts are provided via the JFreeChart library. Includes both command-line and GUI user interfaces. Sample time series data can be found in ${WEKA_HOME}/packages/timeseriesForecasting/sample-data.
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* TimeSeriesPerspective.java
* Copyright (C) 2010-2016 University of Waikato, Hamilton, New Zealand
*/
package weka.gui.knowledgeflow;
import weka.classifiers.timeseries.WekaForecaster;
import weka.classifiers.timeseries.gui.ForecastingPanel;
import weka.core.Defaults;
import weka.core.Environment;
import weka.core.Instances;
import weka.core.Settings;
import weka.gui.AbstractPerspective;
import weka.gui.Logger;
import weka.gui.PerspectiveInfo;
import weka.gui.WorkbenchDefaults;
import weka.knowledgeflow.KFDefaults;
import weka.knowledgeflow.StepManagerImpl;
import weka.knowledgeflow.steps.TimeSeriesForecasting;
import java.awt.BorderLayout;
import java.util.ArrayList;
import java.util.List;
/**
* Knowledge Flow Perspective for the time series forecasting environment
*
* @author Mark Hall
* @version $Revision: $
*/
@PerspectiveInfo(ID = TimeSeriesPerspective.TimeSeriesDefaults.ID,
title = "Time series forecasting",
toolTipText = "Time series forecasting environment",
iconPath = "weka/gui/knowledgeflow/icons/chart_line.png")
public class TimeSeriesPerspective extends AbstractPerspective {
private static final long serialVersionUID = 9120813916333393028L;
/** The forecasting panel to wrap */
protected ForecastingPanel m_forecastingPanel;
/** The current dataset */
protected Instances m_dataSet;
public TimeSeriesPerspective() {
setLayout(new BorderLayout());
m_forecastingPanel = new ForecastingPanel(null, false, false, false);
m_forecastingPanel
.setTimeSeriesModelListener(new TimeSeriesModelListener() {
@Override
public void acceptForecaster(WekaForecaster forecaster,
Instances trainingStruct) {
setForecasterInKFPasteBuffer(forecaster, trainingStruct);
}
});
add(m_forecastingPanel, BorderLayout.CENTER);
}
/**
* Requires a log when running in the Workbench application
*
* @return true if running in the Workbench application
*/
@Override
public boolean requiresLog() {
return getMainApplication().getApplicationID()
.equals(WorkbenchDefaults.APP_ID);
}
@Override
public void setLog(Logger newLog) {
m_forecastingPanel.setLog(newLog);
}
protected void setForecasterInKFPasteBuffer(WekaForecaster forecaster,
Instances structureToSave) {
if (getMainApplication().getMainPerspective().getMainApplication()
.getApplicationID().equals(KFDefaults.APP_ID)) {
try {
String encoded = TimeSeriesForecasting
.encodeForecasterToBase64(forecaster, structureToSave);
TimeSeriesForecasting step = new TimeSeriesForecasting();
step.setEncodedForecaster(encoded);
StepManagerImpl manager = new StepManagerImpl(step);
StepVisual visualStep = StepVisual.createVisual(manager);
List steps = new ArrayList();
steps.add(visualStep);
((MainKFPerspective) getMainApplication().getMainPerspective())
.copyStepsToClipboard(steps);
if (getMainApplication().getApplicationSettings().getSetting(
TimeSeriesDefaults.ID, TimeSeriesDefaults.SHOW_CLIPBOARD_POPUP_KEY,
TimeSeriesDefaults.SHOW_CLIPBOARD_POPUP,
Environment.getSystemWide())) {
getMainApplication().showInfoDialog(
"Configured forecasting "
+ "step has been transferred to the clipboard",
"Time series", false);
}
} catch (Exception ex) {
getMainApplication().showErrorDialog(ex);
}
}
}
/**
* Returns true, as this panel sends instances into the python environment
*
* @return true
*/
@Override
public boolean acceptsInstances() {
return true;
}
@Override
public boolean okToBeActive() {
return m_dataSet != null;
}
@Override
public void setInstances(Instances insts) {
try {
m_dataSet = insts;
m_forecastingPanel.setInstances(m_dataSet);
} catch (Exception ex) {
getMainApplication().showErrorDialog(ex);
}
}
@Override
public Defaults getDefaultSettings() {
return new TimeSeriesDefaults();
}
public interface TimeSeriesModelListener {
void acceptForecaster(WekaForecaster forecaster,
Instances trainingStruct);
}
public static class TimeSeriesDefaults extends Defaults {
private static final long serialVersionUID = 912598893182636566L;
public static final String ID = "weka.gui.knowledgeflow.timeseries";
public static final Settings.SettingKey SHOW_CLIPBOARD_POPUP_KEY =
new Settings.SettingKey(ID + ".showCopyPopup",
"Show clipboard copy popup",
"Whether to show "
+ "the popup dialog when copying a forecaster to the Knowledge Flow "
+ "clipboard");
public static final boolean SHOW_CLIPBOARD_POPUP = true;
public TimeSeriesDefaults() {
super(ID);
m_defaults.put(SHOW_CLIPBOARD_POPUP_KEY, SHOW_CLIPBOARD_POPUP);
}
}
}