All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.associations.AprioriItemSet Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    AprioriItemSet.java
 *    Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.associations;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.Hashtable;

import weka.core.ContingencyTables;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.WekaEnumeration;

/**
 * Class for storing a set of items. Item sets are stored in a lexicographic
 * order, which is determined by the header information of the set of instances
 * used for generating the set of items. All methods in this class assume that
 * item sets are stored in lexicographic order. The class provides methods that
 * are used in the Apriori algorithm to construct association rules.
 * 
 * @author Eibe Frank ([email protected])
 * @author Stefan Mutter ([email protected])
 * @version $Revision: 10203 $
 */
public class AprioriItemSet extends ItemSet implements Serializable,
  RevisionHandler {

  /** for serialization */
  static final long serialVersionUID = 7684467755712672058L;

  /**
   * Constructor
   * 
   * @param totalTrans the total number of transactions in the data
   */
  public AprioriItemSet(int totalTrans) {
    super(totalTrans);
  }

  /**
   * Outputs the confidence for a rule.
   * 
   * @param premise the premise of the rule
   * @param consequence the consequence of the rule
   * @return the confidence on the training data
   */
  public static double confidenceForRule(AprioriItemSet premise,
    AprioriItemSet consequence) {

    return (double) consequence.m_counter / (double) premise.m_counter;
  }

  /**
   * Outputs the lift for a rule. Lift is defined as:
* confidence / prob(consequence) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the lift on the training data */ public double liftForRule(AprioriItemSet premise, AprioriItemSet consequence, int consequenceCount) { double confidence = confidenceForRule(premise, consequence); return confidence / ((double) consequenceCount / (double) m_totalTransactions); } /** * Outputs the leverage for a rule. Leverage is defined as:
* prob(premise & consequence) - (prob(premise) * prob(consequence)) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param premiseCount how many times the premise occurs independent of the * consequent * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the leverage on the training data */ public double leverageForRule(AprioriItemSet premise, AprioriItemSet consequence, int premiseCount, int consequenceCount) { double coverageForItemSet = (double) consequence.m_counter / (double) m_totalTransactions; double expectedCoverageIfIndependent = ((double) premiseCount / (double) m_totalTransactions) * ((double) consequenceCount / (double) m_totalTransactions); double lev = coverageForItemSet - expectedCoverageIfIndependent; return lev; } /** * Outputs the conviction for a rule. Conviction is defined as:
* prob(premise) * prob(!consequence) / prob(premise & !consequence) * * @param premise the premise of the rule * @param consequence the consequence of the rule * @param premiseCount how many times the premise occurs independent of the * consequent * @param consequenceCount how many times the consequence occurs independent * of the premise * @return the conviction on the training data */ public double convictionForRule(AprioriItemSet premise, AprioriItemSet consequence, int premiseCount, int consequenceCount) { double num = (double) premiseCount * (double) (m_totalTransactions - consequenceCount) / m_totalTransactions; double denom = ((premiseCount - consequence.m_counter) + 1); if (num < 0 || denom < 0) { System.err.println("*** " + num + " " + denom); System.err.println("premis count: " + premiseCount + " consequence count " + consequenceCount + " total trans " + m_totalTransactions); } return num / denom; } /** * Generates all rules for an item set. * * @param minConfidence the minimum confidence the rules have to have * @param hashtables containing all(!) previously generated item sets * @param numItemsInSet the size of the item set for which the rules are to be * generated * @return all the rules with minimum confidence for the given item set */ public ArrayList[] generateRules(double minConfidence, ArrayList> hashtables, int numItemsInSet) { ArrayList premises = new ArrayList(), consequences = new ArrayList(), conf = new ArrayList(); // TODO ArrayList lift = new ArrayList(), lev = new ArrayList(), conv = new ArrayList(); // TODO @SuppressWarnings("unchecked") ArrayList[] rules = new ArrayList[6], moreResults; AprioriItemSet premise, consequence; Hashtable hashtable = hashtables.get(numItemsInSet - 2); // Generate all rules with one item in the consequence. for (int i = 0; i < m_items.length; i++) { if (m_items[i] != -1) { premise = new AprioriItemSet(m_totalTransactions); consequence = new AprioriItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; consequence.m_items = new int[m_items.length]; consequence.m_counter = m_counter; for (int j = 0; j < m_items.length; j++) { consequence.m_items[j] = -1; } System.arraycopy(m_items, 0, premise.m_items, 0, m_items.length); premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; premise.m_counter = hashtable.get(premise).intValue(); Hashtable hashtableForConsequence = hashtables.get(0); int consequenceUnconditionedCounter = hashtableForConsequence.get( consequence).intValue(); premises.add(premise); consequences.add(consequence); conf.add(new Double(confidenceForRule(premise, consequence))); double tempLift = liftForRule(premise, consequence, consequenceUnconditionedCounter); double tempLev = leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); double tempConv = convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); lift.add(new Double(tempLift)); lev.add(new Double(tempLev)); conv.add(new Double(tempConv)); } } rules[0] = premises; rules[1] = consequences; rules[2] = conf; rules[3] = lift; rules[4] = lev; rules[5] = conv; pruneRules(rules, minConfidence); // Generate all the other rules moreResults = moreComplexRules(rules, numItemsInSet, 1, minConfidence, hashtables); if (moreResults != null) { for (int i = 0; i < moreResults[0].size(); i++) { rules[0].add(moreResults[0].get(i)); rules[1].add(moreResults[1].get(i)); rules[2].add(moreResults[2].get(i)); // TODO rules[3].add(moreResults[3].get(i)); rules[4].add(moreResults[4].get(i)); rules[5].add(moreResults[5].get(i)); } } return rules; } /** * Generates all significant rules for an item set. * * @param minMetric the minimum metric (confidence, lift, leverage, * improvement) the rules have to have * @param metricType (confidence=0, lift, leverage, improvement) * @param hashtables containing all(!) previously generated item sets * @param numItemsInSet the size of the item set for which the rules are to be * generated * @param numTransactions * @param significanceLevel the significance level for testing the rules * @return all the rules with minimum metric for the given item set * @exception Exception if something goes wrong */ public final ArrayList[] generateRulesBruteForce(double minMetric, int metricType, ArrayList> hashtables, int numItemsInSet, int numTransactions, double significanceLevel) throws Exception { ArrayList premises = new ArrayList(), consequences = new ArrayList(), conf = new ArrayList(), lift = new ArrayList(), lev = new ArrayList(), conv = new ArrayList(); @SuppressWarnings("unchecked") ArrayList[] rules = new ArrayList[6]; AprioriItemSet premise, consequence; Hashtable hashtableForPremise, hashtableForConsequence; int numItemsInPremise, help, max, consequenceUnconditionedCounter; double[][] contingencyTable = new double[2][2]; double metric, chiSquared = 0; // Generate all possible rules for this item set and test their // significance. max = (int) Math.pow(2, numItemsInSet); for (int j = 1; j < max; j++) { numItemsInPremise = 0; help = j; while (help > 0) { if (help % 2 == 1) { numItemsInPremise++; } help /= 2; } if (numItemsInPremise < numItemsInSet) { hashtableForPremise = hashtables.get(numItemsInPremise - 1); hashtableForConsequence = hashtables.get(numItemsInSet - numItemsInPremise - 1); premise = new AprioriItemSet(m_totalTransactions); consequence = new AprioriItemSet(m_totalTransactions); premise.m_items = new int[m_items.length]; consequence.m_items = new int[m_items.length]; consequence.m_counter = m_counter; help = j; for (int i = 0; i < m_items.length; i++) { if (m_items[i] != -1) { if (help % 2 == 1) { premise.m_items[i] = m_items[i]; consequence.m_items[i] = -1; } else { premise.m_items[i] = -1; consequence.m_items[i] = m_items[i]; } help /= 2; } else { premise.m_items[i] = -1; consequence.m_items[i] = -1; } } premise.m_counter = hashtableForPremise.get(premise).intValue(); consequenceUnconditionedCounter = hashtableForConsequence.get( consequence).intValue(); if (significanceLevel != -1) { contingencyTable[0][0] = (consequence.m_counter); contingencyTable[0][1] = (premise.m_counter - consequence.m_counter); contingencyTable[1][0] = (consequenceUnconditionedCounter - consequence.m_counter); contingencyTable[1][1] = (numTransactions - premise.m_counter - consequenceUnconditionedCounter + consequence.m_counter); chiSquared = ContingencyTables.chiSquared(contingencyTable, false); } if (metricType == 0) { metric = confidenceForRule(premise, consequence); if ((!(metric < minMetric)) && (significanceLevel == -1 || !(chiSquared > significanceLevel))) { premises.add(premise); consequences.add(consequence); conf.add(new Double(metric)); lift.add(new Double(liftForRule(premise, consequence, consequenceUnconditionedCounter))); lev.add(new Double(leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); conv.add(new Double(convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter))); } } else { double tempConf = confidenceForRule(premise, consequence); double tempLift = liftForRule(premise, consequence, consequenceUnconditionedCounter); double tempLev = leverageForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); double tempConv = convictionForRule(premise, consequence, premise.m_counter, consequenceUnconditionedCounter); switch (metricType) { case 1: metric = tempLift; break; case 2: metric = tempLev; break; case 3: metric = tempConv; break; default: throw new Exception("ItemSet: Unknown metric type!"); } if (!(metric < minMetric) && (significanceLevel == -1 || !(chiSquared > significanceLevel))) { premises.add(premise); consequences.add(consequence); conf.add(new Double(tempConf)); lift.add(new Double(tempLift)); lev.add(new Double(tempLev)); conv.add(new Double(tempConv)); } } } } rules[0] = premises; rules[1] = consequences; rules[2] = conf; rules[3] = lift; rules[4] = lev; rules[5] = conv; return rules; } /** * Subtracts an item set from another one. * * @param toSubtract the item set to be subtracted from this one. * @return an item set that only contains items form this item sets that are * not contained by toSubtract */ public final AprioriItemSet subtract(AprioriItemSet toSubtract) { AprioriItemSet result = new AprioriItemSet(m_totalTransactions); result.m_items = new int[m_items.length]; for (int i = 0; i < m_items.length; i++) { if (toSubtract.m_items[i] == -1) { result.m_items[i] = m_items[i]; } else { result.m_items[i] = -1; } } result.m_counter = 0; return result; } /** * Generates rules with more than one item in the consequence. * * @param rules all the rules having (k-1)-item sets as consequences * @param numItemsInSet the size of the item set for which the rules are to be * generated * @param numItemsInConsequence the value of (k-1) * @param minConfidence the minimum confidence a rule has to have * @param hashtables the hashtables containing all(!) previously generated * item sets * @return all the rules having (k)-item sets as consequences */ @SuppressWarnings("unchecked") private final ArrayList[] moreComplexRules(ArrayList[] rules, int numItemsInSet, int numItemsInConsequence, double minConfidence, ArrayList> hashtables) { AprioriItemSet newPremise; ArrayList[] result, moreResults; ArrayList newConsequences, newPremises = new ArrayList(), newConf = new ArrayList(); Hashtable hashtable; ArrayList newLift = null, newLev = null, newConv = null; // if (rules.length > 3) { newLift = new ArrayList(); newLev = new ArrayList(); newConv = new ArrayList(); // } if (numItemsInSet > numItemsInConsequence + 1) { hashtable = hashtables.get(numItemsInSet - numItemsInConsequence - 2); newConsequences = mergeAllItemSets(rules[1], numItemsInConsequence - 1, m_totalTransactions); int newNumInConsequence = numItemsInConsequence + 1; Hashtable hashtableForConsequence = hashtables .get(newNumInConsequence - 1); Enumeration enu = new WekaEnumeration(newConsequences); while (enu.hasMoreElements()) { AprioriItemSet current = (AprioriItemSet) enu.nextElement(); for (int m_item : current.m_items) { if (m_item != -1) { } } current.m_counter = m_counter; newPremise = subtract(current); newPremise.m_counter = hashtable.get(newPremise).intValue(); newPremises.add(newPremise); newConf.add(new Double(confidenceForRule(newPremise, current))); // if (rules.length > 3) { int consequenceUnconditionedCounter = hashtableForConsequence.get( current).intValue(); double tempLift = liftForRule(newPremise, current, consequenceUnconditionedCounter); double tempLev = leverageForRule(newPremise, current, newPremise.m_counter, consequenceUnconditionedCounter); double tempConv = convictionForRule(newPremise, current, newPremise.m_counter, consequenceUnconditionedCounter); newLift.add(new Double(tempLift)); newLev.add(new Double(tempLev)); newConv.add(new Double(tempConv)); // } } result = new ArrayList[rules.length]; result[0] = newPremises; result[1] = newConsequences; result[2] = newConf; // if (rules.length > 3) { result[3] = newLift; result[4] = newLev; result[5] = newConv; // } pruneRules(result, minConfidence); moreResults = moreComplexRules(result, numItemsInSet, numItemsInConsequence + 1, minConfidence, hashtables); if (moreResults != null) { for (int i = 0; i < moreResults[0].size(); i++) { result[0].add(moreResults[0].get(i)); result[1].add(moreResults[1].get(i)); result[2].add(moreResults[2].get(i)); // result[3].add(moreResults[3].get(i)); result[4].add(moreResults[4].get(i)); result[5].add(moreResults[5].get(i)); } } return result; } else { return null; } } /** * Returns the contents of an item set as a string. * * @param instances contains the relevant header information * @return string describing the item set */ @Override public final String toString(Instances instances) { return super.toString(instances); } /** * Converts the header info of the given set of instances into a set of item * sets (singletons). The ordering of values in the header file determines the * lexicographic order. * * @param instances the set of instances whose header info is to be used * @return a set of item sets, each containing a single item * @exception Exception if singletons can't be generated successfully */ public static ArrayList singletons(Instances instances, boolean treatZeroAsMissing) throws Exception { ArrayList setOfItemSets = new ArrayList(); AprioriItemSet current; for (int i = 0; i < instances.numAttributes(); i++) { if (instances.attribute(i).isNumeric()) { throw new Exception("Can't handle numeric attributes!"); } int j = (treatZeroAsMissing) ? 1 : 0; for (; j < instances.attribute(i).numValues(); j++) { current = new AprioriItemSet(instances.numInstances()); current.m_items = new int[instances.numAttributes()]; for (int k = 0; k < instances.numAttributes(); k++) { current.m_items[k] = -1; } current.m_items[i] = j; setOfItemSets.add(current); } } return setOfItemSets; } /** * Merges all item sets in the set of (k-1)-item sets to create the (k)-item * sets and updates the counters. * * @param itemSets the set of (k-1)-item sets * @param size the value of (k-1) * @param totalTrans the total number of transactions in the data * @return the generated (k)-item sets */ public static ArrayList mergeAllItemSets(ArrayList itemSets, int size, int totalTrans) { ArrayList newVector = new ArrayList(); AprioriItemSet result; int numFound, k; for (int i = 0; i < itemSets.size(); i++) { ItemSet first = (ItemSet) itemSets.get(i); out: for (int j = i + 1; j < itemSets.size(); j++) { ItemSet second = (ItemSet) itemSets.get(j); result = new AprioriItemSet(totalTrans); result.m_items = new int[first.m_items.length]; // Find and copy common prefix of size 'size' numFound = 0; k = 0; while (numFound < size) { if (first.m_items[k] == second.m_items[k]) { if (first.m_items[k] != -1) { numFound++; } result.m_items[k] = first.m_items[k]; } else { break out; } k++; } // Check difference while (k < first.m_items.length) { if ((first.m_items[k] != -1) && (second.m_items[k] != -1)) { break; } else { if (first.m_items[k] != -1) { result.m_items[k] = first.m_items[k]; } else { result.m_items[k] = second.m_items[k]; } } k++; } if (k == first.m_items.length) { result.m_counter = 0; newVector.add(result); } } } return newVector; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 10203 $"); } }