weka.attributeSelection.OneRAttributeEval Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* OneRAttributeEval.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.attributeSelection;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Remove;
/**
* OneRAttributeEval :
*
* Evaluates the worth of an attribute by using the OneR classifier.
*
*
*
* Valid options are:
*
*
*
* -S <seed>
* Random number seed for cross validation
* (default = 1)
*
*
*
* -F <folds>
* Number of folds for cross validation
* (default = 10)
*
*
*
* -D
* Use training data for evaluation rather than cross validaton
*
*
*
* -B <minimum bucket size>
* Minimum number of objects in a bucket
* (passed on to OneR, default = 6)
*
*
*
*
* @author Mark Hall ([email protected])
* @version $Revision: 11215 $
*/
public class OneRAttributeEval extends ASEvaluation implements
AttributeEvaluator, OptionHandler {
/** for serialization */
static final long serialVersionUID = 4386514823886856980L;
/** The training instances */
private Instances m_trainInstances;
/** Random number seed */
private int m_randomSeed;
/** Number of folds for cross validation */
private int m_folds;
/** Use training data to evaluate merit rather than x-val */
private boolean m_evalUsingTrainingData;
/** Passed on to OneR */
private int m_minBucketSize;
/**
* Returns a string describing this attribute evaluator
*
* @return a description of the evaluator suitable for displaying in the
* explorer/experimenter gui
*/
public String globalInfo() {
return "OneRAttributeEval :\n\nEvaluates the worth of an attribute by "
+ "using the OneR classifier.\n";
}
/**
* Returns a string for this option suitable for display in the gui as a tip
* text
*
* @return a string describing this option
*/
public String seedTipText() {
return "Set the seed for use in cross validation.";
}
/**
* Set the random number seed for cross validation
*
* @param seed the seed to use
*/
public void setSeed(int seed) {
m_randomSeed = seed;
}
/**
* Get the random number seed
*
* @return an int
value
*/
public int getSeed() {
return m_randomSeed;
}
/**
* Returns a string for this option suitable for display in the gui as a tip
* text
*
* @return a string describing this option
*/
public String foldsTipText() {
return "Set the number of folds for cross validation.";
}
/**
* Set the number of folds to use for cross validation
*
* @param folds the number of folds
*/
public void setFolds(int folds) {
m_folds = folds;
if (m_folds < 2) {
m_folds = 2;
}
}
/**
* Get the number of folds used for cross validation
*
* @return the number of folds
*/
public int getFolds() {
return m_folds;
}
/**
* Returns a string for this option suitable for display in the gui as a tip
* text
*
* @return a string describing this option
*/
public String evalUsingTrainingDataTipText() {
return "Use the training data to evaluate attributes rather than "
+ "cross validation.";
}
/**
* Use the training data to evaluate attributes rather than cross validation
*
* @param e true if training data is to be used for evaluation
*/
public void setEvalUsingTrainingData(boolean e) {
m_evalUsingTrainingData = e;
}
/**
* Returns a string for this option suitable for display in the gui as a tip
* text
*
* @return a string describing this option
*/
public String minimumBucketSizeTipText() {
return "The minimum number of objects in a bucket " + "(passed to OneR).";
}
/**
* Set the minumum bucket size used by OneR
*
* @param minB the minimum bucket size to use
*/
public void setMinimumBucketSize(int minB) {
m_minBucketSize = minB;
}
/**
* Get the minimum bucket size used by oneR
*
* @return the minimum bucket size used
*/
public int getMinimumBucketSize() {
return m_minBucketSize;
}
/**
* Returns true if the training data is to be used for evaluation
*
* @return true if training data is to be used for evaluation
*/
public boolean getEvalUsingTrainingData() {
return m_evalUsingTrainingData;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy