All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.ParallelIteratedSingleClassifierEnhancer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    ParallelIteratedSingleClassifierEnhancer.java
 *    Copyright (C) 2009-2014 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger;

import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;

/**
 * Abstract utility class for handling settings common to
 * meta classifiers that build an ensemble in parallel from a single
 * base learner.
 *
 * @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
 * @author Bernhard Pfahringer ([email protected])
 * @version $Revision: 10466 $
 */
public abstract class ParallelIteratedSingleClassifierEnhancer extends
    IteratedSingleClassifierEnhancer {

  /** For serialization */
  private static final long serialVersionUID = -5026378741833046436L;

  /** The number of threads to have executing at any one time */
  protected int m_numExecutionSlots = 1;

  /**
   * Returns an enumeration describing the available options.
   *
   * @return an enumeration of all the available options.
   */
  public Enumeration

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String iterations = Utils.getOption("num-slots", options); if (iterations.length() != 0) { setNumExecutionSlots(Integer.parseInt(iterations)); } else { setNumExecutionSlots(1); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 2]; int current = 0; options[current++] = "-num-slots"; options[current++] = "" + getNumExecutionSlots(); System.arraycopy(superOptions, 0, options, current, superOptions.length); return options; } /** * Set the number of execution slots (threads) to use for building the * members of the ensemble. * * @param numSlots the number of slots to use. */ public void setNumExecutionSlots(int numSlots) { m_numExecutionSlots = numSlots; } /** * Get the number of execution slots (threads) to use for building * the members of the ensemble. * * @return the number of slots to use */ public int getNumExecutionSlots() { return m_numExecutionSlots; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numExecutionSlotsTipText() { return "The number of execution slots (threads) to use for " + "constructing the ensemble."; } /** * Stump method for building the classifiers * * @param data the training data to be used for generating the ensemble * @exception Exception if the classifier could not be built successfully */ public void buildClassifier(Instances data) throws Exception { super.buildClassifier(data); if (m_numExecutionSlots < 0) { throw new Exception("Number of execution slots needs to be >= 0!"); } } /** * Start the pool of execution threads */ /** * Does the actual construction of the ensemble * * @throws Exception if something goes wrong during the training * process */ protected void buildClassifiers() throws Exception { if (m_numExecutionSlots != 1) { int numCores = (m_numExecutionSlots == 0) ? Runtime.getRuntime().availableProcessors() : m_numExecutionSlots; ExecutorService executorPool = Executors.newFixedThreadPool(numCores); final CountDownLatch doneSignal = new CountDownLatch(m_Classifiers.length); final AtomicInteger numFailed = new AtomicInteger(); for (int i = 0; i < m_Classifiers.length; i++) { final Classifier currentClassifier = m_Classifiers[i]; // MultiClassClassifier may produce occasional NULL classifiers ... if (currentClassifier == null) continue; final int iteration = i; if (m_Debug) { System.out.print("Training classifier (" + (i +1) + ")"); } Runnable newTask = new Runnable() { public void run() { try { currentClassifier.buildClassifier( getTrainingSet(iteration)); } catch (Exception ex) { ex.printStackTrace(); numFailed.incrementAndGet(); if (m_Debug) { System.err.println("Iteration " + iteration + " failed!"); } } finally { doneSignal.countDown(); } } }; // launch this task executorPool.submit(newTask); } // wait for all tasks to finish, then shutdown pool doneSignal.await(); executorPool.shutdownNow(); if (m_Debug && numFailed.intValue() > 0) { System.err.println("Problem building classifiers - some iterations failed."); } } else { // simple single-threaded execution for (int i = 0; i < m_Classifiers.length; i++) { m_Classifiers[i].buildClassifier( getTrainingSet(i)); } } } /** * Gets a training set for a particular iteration. Implementations need * to be careful with thread safety and should probably be synchronized * to be on the safe side. * * @param iteration the number of the iteration for the requested training set * @return the training set for the supplied iteration number * @throws Exception if something goes wrong. */ protected abstract Instances getTrainingSet(int iteration) throws Exception; }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy