weka.classifiers.bayes.net.search.global.K2 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* K2.java
* Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.bayes.net.search.global;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Random;
import java.util.Vector;
import weka.classifiers.bayes.BayesNet;
import weka.core.Instances;
import weka.core.Option;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
/**
* This Bayes Network learning algorithm uses a hill
* climbing algorithm restricted by an order on the variables.
*
* For more information see:
*
* G.F. Cooper, E. Herskovits (1990). A Bayesian method for constructing
* Bayesian belief networks from databases.
*
* G. Cooper, E. Herskovits (1992). A Bayesian method for the induction of
* probabilistic networks from data. Machine Learning. 9(4):309-347.
*
* Works with nominal variables and no missing values only.
*
*
*
* BibTeX:
*
*
* @proceedings{Cooper1990,
* author = {G.F. Cooper and E. Herskovits},
* booktitle = {Proceedings of the Conference on Uncertainty in AI},
* pages = {86-94},
* title = {A Bayesian method for constructing Bayesian belief networks from databases},
* year = {1990}
* }
*
* @article{Cooper1992,
* author = {G. Cooper and E. Herskovits},
* journal = {Machine Learning},
* number = {4},
* pages = {309-347},
* title = {A Bayesian method for the induction of probabilistic networks from data},
* volume = {9},
* year = {1992}
* }
*
*
*
*
* Valid options are:
*
*
*
* -N
* Initial structure is empty (instead of Naive Bayes)
*
*
*
* -P <nr of parents>
* Maximum number of parents
*
*
*
* -R
* Random order.
* (default false)
*
*
*
* -mbc
* Applies a Markov Blanket correction to the network structure,
* after a network structure is learned. This ensures that all
* nodes in the network are part of the Markov blanket of the
* classifier node.
*
*
*
* -S [LOO-CV|k-Fold-CV|Cumulative-CV]
* Score type (LOO-CV,k-Fold-CV,Cumulative-CV)
*
*
*
* -Q
* Use probabilistic or 0/1 scoring.
* (default probabilistic scoring)
*
*
*
*
* @author Remco Bouckaert ([email protected])
* @version $Revision: 11247 $
*/
public class K2 extends GlobalScoreSearchAlgorithm implements
TechnicalInformationHandler {
/** for serialization */
static final long serialVersionUID = -6626871067466338256L;
/** Holds flag to indicate ordering should be random **/
boolean m_bRandomOrder = false;
/**
* Returns an instance of a TechnicalInformation object, containing detailed
* information about the technical background of this class, e.g., paper
* reference or book this class is based on.
*
* @return the technical information about this class
*/
@Override
public TechnicalInformation getTechnicalInformation() {
TechnicalInformation result;
TechnicalInformation additional;
result = new TechnicalInformation(Type.PROCEEDINGS);
result.setValue(Field.AUTHOR, "G.F. Cooper and E. Herskovits");
result.setValue(Field.YEAR, "1990");
result
.setValue(Field.TITLE,
"A Bayesian method for constructing Bayesian belief networks from databases");
result.setValue(Field.BOOKTITLE,
"Proceedings of the Conference on Uncertainty in AI");
result.setValue(Field.PAGES, "86-94");
additional = result.add(Type.ARTICLE);
additional.setValue(Field.AUTHOR, "G. Cooper and E. Herskovits");
additional.setValue(Field.YEAR, "1992");
additional
.setValue(Field.TITLE,
"A Bayesian method for the induction of probabilistic networks from data");
additional.setValue(Field.JOURNAL, "Machine Learning");
additional.setValue(Field.VOLUME, "9");
additional.setValue(Field.NUMBER, "4");
additional.setValue(Field.PAGES, "309-347");
return result;
}
/**
* search determines the network structure/graph of the network with the K2
* algorithm, restricted by its initial structure (which can be an empty
* graph, or a Naive Bayes graph.
*
* @param bayesNet the network
* @param instances the data to work with
* @throws Exception if something goes wrong
*/
@Override
public void search(BayesNet bayesNet, Instances instances) throws Exception {
int nOrder[] = new int[instances.numAttributes()];
nOrder[0] = instances.classIndex();
int nAttribute = 0;
for (int iOrder = 1; iOrder < instances.numAttributes(); iOrder++) {
if (nAttribute == instances.classIndex()) {
nAttribute++;
}
nOrder[iOrder] = nAttribute++;
}
if (m_bRandomOrder) {
// generate random ordering (if required)
Random random = new Random();
int iClass;
if (getInitAsNaiveBayes()) {
iClass = 0;
} else {
iClass = -1;
}
for (int iOrder = 0; iOrder < instances.numAttributes(); iOrder++) {
int iOrder2 = random.nextInt(instances.numAttributes());
if (iOrder != iClass && iOrder2 != iClass) {
int nTmp = nOrder[iOrder];
nOrder[iOrder] = nOrder[iOrder2];
nOrder[iOrder2] = nTmp;
}
}
}
// determine base scores
double fBaseScore = calcScore(bayesNet);
// K2 algorithm: greedy search restricted by ordering
for (int iOrder = 1; iOrder < instances.numAttributes(); iOrder++) {
int iAttribute = nOrder[iOrder];
double fBestScore = fBaseScore;
boolean bProgress = (bayesNet.getParentSet(iAttribute).getNrOfParents() < getMaxNrOfParents());
while (bProgress
&& (bayesNet.getParentSet(iAttribute).getNrOfParents() < getMaxNrOfParents())) {
int nBestAttribute = -1;
for (int iOrder2 = 0; iOrder2 < iOrder; iOrder2++) {
int iAttribute2 = nOrder[iOrder2];
double fScore = calcScoreWithExtraParent(iAttribute, iAttribute2);
if (fScore > fBestScore) {
fBestScore = fScore;
nBestAttribute = iAttribute2;
}
}
if (nBestAttribute != -1) {
bayesNet.getParentSet(iAttribute)
.addParent(nBestAttribute, instances);
fBaseScore = fBestScore;
bProgress = true;
} else {
bProgress = false;
}
}
}
} // search
/**
* Sets the max number of parents
*
* @param nMaxNrOfParents the max number of parents
*/
public void setMaxNrOfParents(int nMaxNrOfParents) {
m_nMaxNrOfParents = nMaxNrOfParents;
}
/**
* Gets the max number of parents.
*
* @return the max number of parents
*/
public int getMaxNrOfParents() {
return m_nMaxNrOfParents;
}
/**
* Sets whether to init as naive bayes
*
* @param bInitAsNaiveBayes whether to init as naive bayes
*/
public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) {
m_bInitAsNaiveBayes = bInitAsNaiveBayes;
}
/**
* Gets whether to init as naive bayes
*
* @return whether to init as naive bayes
*/
public boolean getInitAsNaiveBayes() {
return m_bInitAsNaiveBayes;
}
/**
* Set random order flag
*
* @param bRandomOrder the random order flag
*/
public void setRandomOrder(boolean bRandomOrder) {
m_bRandomOrder = bRandomOrder;
} // SetRandomOrder
/**
* Get random order flag
*
* @return the random order flag
*/
public boolean getRandomOrder() {
return m_bRandomOrder;
} // getRandomOrder
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
@Override
public Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy