weka.classifiers.evaluation.EvaluationMetricHelper Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* EvaluationMetricHelper.java
* Copyright (C) 2014 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Helper routines for extracting metric values from built-in and plugin
* evaluation metrics.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 10934 $
*/
public class EvaluationMetricHelper {
/** The Evaluation object to extract built-in and plugin metrics from */
protected Evaluation m_eval;
/** A lookup for built-in metrics */
protected Map m_builtin = new HashMap();
/** A lookup for plugin metrics */
protected Map m_pluginMetrics =
new HashMap();
/**
* Construct a new EvaluationMetricHelper
*
* @param eval the Evaluation object to use
*/
public EvaluationMetricHelper(Evaluation eval) {
for (int i = 0; i < Evaluation.BUILT_IN_EVAL_METRICS.length; i++) {
m_builtin.put(Evaluation.BUILT_IN_EVAL_METRICS[i].toLowerCase(), i);
}
setEvaluation(eval);
}
/**
* Sets the Evaluation object to use
*
* @param eval the Evaluation object to use
*/
public void setEvaluation(Evaluation eval) {
m_eval = eval;
initializeWithPluginMetrics();
}
/**
* Initializes the plugin lookup
*/
protected void initializeWithPluginMetrics() {
m_pluginMetrics.clear();
List pluginMetrics = m_eval.getPluginMetrics();
if (pluginMetrics != null && pluginMetrics.size() > 0) {
for (AbstractEvaluationMetric m : pluginMetrics) {
List statNames = m.getStatisticNames();
for (String s : statNames) {
m_pluginMetrics.put(s.toLowerCase(), m);
}
}
}
}
/**
* Get a list of built-in metric names
*
* @return a list of built-in metric names
*/
public static List getBuiltInMetricNames() {
List builtIn = new ArrayList();
builtIn.addAll(Arrays.asList(Evaluation.BUILT_IN_EVAL_METRICS));
return builtIn;
}
/**
* Get a list of plugin metric names
*
* @return a list of plugin metric names
*/
public static List getPluginMetricNames() {
List pluginNames = new ArrayList();
List pluginMetrics =
AbstractEvaluationMetric.getPluginMetrics();
if (pluginMetrics != null) {
for (AbstractEvaluationMetric m : pluginMetrics) {
List statNames = m.getStatisticNames();
for (String s : statNames) {
pluginNames.add(s.toLowerCase());
}
}
}
return pluginNames;
}
/**
* Get a list of all available evaluation metric names
*
* @return a list of all available evaluation metric names
*/
public static List getAllMetricNames() {
List metrics = getBuiltInMetricNames();
metrics.addAll(getPluginMetricNames());
return metrics;
}
/**
* Returns true if the specified built-in metric is maximisable
*
* @param metricIndex the index of metric
* @return true if the metric in question is optimum at a maximal value
* @throws Exception if the metric is not a known built-in metric
*/
protected boolean builtInMetricIsMaximisable(int metricIndex)
throws Exception {
switch (metricIndex) {
case 0:
// correct
return true;
case 1:
// incorrect
return false;
case 2:
// kappa
return true;
case 3:
// total cost
return false;
case 4:
// avg cost
return false;
case 5:
// KB relative info
return false;
case 6:
// KB info
return false;
case 7:
// correlation
return true;
case 8:
// SF prior entropy
return false;
case 9:
// SF scheme entropy
return false;
case 10:
// SF entropy gain
return true;
case 11:
// MAE
return false;
case 12:
// RMSE
return false;
case 13:
// RAE
return false;
case 14:
// RRSE
return false;
case 15:
// coverage of cases by predicted regions
return true;
case 16:
// size of predicted regions
return false;
case 17:
// TPR
return true;
case 18:
// FPR
return false;
case 19:
// precision
return true;
case 20:
// recall
return true;
case 21:
// f-measure
return true;
case 22:
// Matthews correlation
return true;
case 23:
// AUC
return true;
case 24:
// AUPRC
return true;
}
throw new Exception("Unknown built-in metric");
}
/**
* Gets the value of a built-in metric
*
* @param metricIndex the index of the metric
* @param classValIndex the optional class value index
* @return the value of the metric
* @throws Exception if the metric is not a known built-in metric
*/
protected double getBuiltinMetricValue(int metricIndex, int... classValIndex)
throws Exception {
boolean hasValIndex = classValIndex != null && classValIndex.length == 1;
switch (metricIndex) {
case 0:
return m_eval.correct();
case 1:
return m_eval.incorrect();
case 2:
return m_eval.kappa();
case 3:
return m_eval.totalCost();
case 4:
return m_eval.avgCost();
case 5:
return m_eval.KBRelativeInformation();
case 6:
return m_eval.KBInformation();
case 7:
return m_eval.correlationCoefficient();
case 8:
return m_eval.SFPriorEntropy();
case 9:
return m_eval.SFSchemeEntropy();
case 10:
return m_eval.SFEntropyGain();
case 11:
return m_eval.meanAbsoluteError();
case 12:
return m_eval.rootMeanSquaredError();
case 13:
return m_eval.relativeAbsoluteError();
case 14:
return m_eval.rootRelativeSquaredError();
case 15:
return m_eval.coverageOfTestCasesByPredictedRegions();
case 16:
return m_eval.sizeOfPredictedRegions();
case 17:
return hasValIndex ? m_eval.truePositiveRate(classValIndex[0]) : m_eval
.weightedTruePositiveRate();
case 18:
return hasValIndex ? m_eval.falsePositiveRate(classValIndex[0]) : m_eval
.weightedFalsePositiveRate();
case 19:
return hasValIndex ? m_eval.precision(classValIndex[0]) : m_eval
.weightedPrecision();
case 20:
return hasValIndex ? m_eval.recall(classValIndex[0]) : m_eval
.weightedRecall();
case 21:
return hasValIndex ? m_eval.fMeasure(classValIndex[0]) : m_eval
.weightedFMeasure();
case 22:
return hasValIndex ? m_eval
.matthewsCorrelationCoefficient(classValIndex[0]) : m_eval
.weightedMatthewsCorrelation();
case 23:
return hasValIndex ? m_eval.areaUnderROC(classValIndex[0]) : m_eval
.weightedAreaUnderROC();
case 24:
return hasValIndex ? m_eval.areaUnderPRC(classValIndex[0]) : m_eval
.weightedAreaUnderPRC();
}
throw new Exception("Unknown built-in metric");
}
/**
* Get the value of a plugin metric
*
* @param m the metric to get the value from
* @param statName the name of the statistic to get the value of
* @param classValIndex the optional class value index
* @return the value of the metric
* @throws Exception if a problem occurs
*/
protected double getPluginMetricValue(AbstractEvaluationMetric m,
String statName, int... classValIndex) throws Exception {
boolean hasValIndex = classValIndex != null && classValIndex.length == 1;
if (m instanceof InformationRetrievalEvaluationMetric) {
return hasValIndex ? ((InformationRetrievalEvaluationMetric) m)
.getStatistic(statName, classValIndex[0])
: ((InformationRetrievalEvaluationMetric) m)
.getClassWeightedAverageStatistic(statName);
}
return m.getStatistic(statName);
}
/**
* Returns true if the named statistic is maximisable
*
* @param m the metric to check
* @param statName the name of the statistic to check
* @return true if the metric in question is optimum at a maximal value
*/
protected boolean pluginMetricIsMaximisable(AbstractEvaluationMetric m,
String statName) {
return m.statisticIsMaximisable(statName);
}
/**
* Gets the value of a named metric. For information retrieval metrics if a
* class value index is not supplied then the class weighted variant is
* returned.
*
* @param statName the name of the metric/statistic to get
* @param classValIndex the optional class value index
* @return the value of the metric
* @throws Exception if the metric/stat is unknown or a problem occurs
*/
public double getNamedMetric(String statName, int... classValIndex)
throws Exception {
if (classValIndex != null && classValIndex.length > 1) {
throw new IllegalArgumentException(
"Only one class value index should be supplied");
}
Integer builtinIndex = m_builtin.get(statName.toLowerCase());
if (builtinIndex != null) {
return getBuiltinMetricValue(builtinIndex.intValue(), classValIndex);
} else {
AbstractEvaluationMetric m = m_pluginMetrics.get(statName.toLowerCase());
if (m == null) {
throw new Exception("Unknown evaluation metric: " + statName);
}
return getPluginMetricValue(m, statName, classValIndex);
}
}
/**
* Gets the thresholds produced by the metric, if the metric implements
* ThresholdProducingMetric.
*
* @param statName the name of the metric/statistic to get
* @return the thresholds, null if metric does not produce any
* @throws Exception if the metric/stat is unknown or a problem occurs
*/
public double[] getNamedMetricThresholds(String statName)
throws Exception {
Integer builtinIndex = m_builtin.get(statName.toLowerCase());
if (builtinIndex != null) {
return null; // built-in metrics don not produce thresholds
} else {
AbstractEvaluationMetric m = m_pluginMetrics.get(statName.toLowerCase());
if (m == null) {
throw new Exception("Unknown evaluation metric: " + statName);
}
if (m instanceof ThresholdProducingMetric) {
return ((ThresholdProducingMetric)m).getThresholds();
} else {
return null;
}
}
}
/**
* Returns true if the named metric is maximisable
*
* @param statName the name of the metric/statistic to check
* @return true if the metric in question is optimum at a maximal value
* @throws Exception if a problem occurs
*/
public boolean metricIsMaximisable(String statName) throws Exception {
Integer builtinIndex = m_builtin.get(statName.toLowerCase());
if (builtinIndex != null) {
return builtInMetricIsMaximisable(builtinIndex.intValue());
} else {
AbstractEvaluationMetric m = m_pluginMetrics.get(statName.toLowerCase());
if (m == null) {
throw new Exception("Unknown evaluation metric: " + statName);
}
return pluginMetricIsMaximisable(m, statName);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy