weka.classifiers.evaluation.NumericPrediction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* NumericPrediction.java
* Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.evaluation;
import java.io.Serializable;
import weka.classifiers.IntervalEstimator;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
/**
* Encapsulates an evaluatable numeric prediction: the predicted class value
* plus the actual class value.
*
* @author Len Trigg ([email protected])
* @version $Revision: 8034 $
*/
public class NumericPrediction
implements Prediction, Serializable, RevisionHandler {
/** for serialization. */
private static final long serialVersionUID = -4880216423674233887L;
/** The actual class value. */
private double m_Actual = MISSING_VALUE;
/** The predicted class value. */
private double m_Predicted = MISSING_VALUE;
/** The weight assigned to this prediction. */
private double m_Weight = 1;
/** the prediction intervals. */
private double[][] m_PredictionIntervals;
/**
* Creates the NumericPrediction object with a default weight of 1.0.
*
* @param actual the actual value, or MISSING_VALUE.
* @param predicted the predicted value, or MISSING_VALUE.
*/
public NumericPrediction(double actual, double predicted) {
this(actual, predicted, 1);
}
/**
* Creates the NumericPrediction object.
*
* @param actual the actual value, or MISSING_VALUE.
* @param predicted the predicted value, or MISSING_VALUE.
* @param weight the weight assigned to the prediction.
*/
public NumericPrediction(double actual, double predicted, double weight) {
this(actual, predicted, weight, new double[0][]);
}
/**
* Creates the NumericPrediction object.
*
* @param actual the actual value, or MISSING_VALUE.
* @param predicted the predicted value, or MISSING_VALUE.
* @param weight the weight assigned to the prediction.
* @param predInt the prediction intervals from classifiers implementing
* the IntervalEstimator
interface.
* @see IntervalEstimator
*/
public NumericPrediction(double actual, double predicted, double weight, double[][] predInt) {
m_Actual = actual;
m_Predicted = predicted;
m_Weight = weight;
setPredictionIntervals(predInt);
}
/**
* Gets the actual class value.
*
* @return the actual class value, or MISSING_VALUE if no
* prediction was made.
*/
public double actual() {
return m_Actual;
}
/**
* Gets the predicted class value.
*
* @return the predicted class value, or MISSING_VALUE if no
* prediction was made.
*/
public double predicted() {
return m_Predicted;
}
/**
* Gets the weight assigned to this prediction. This is typically the weight
* of the test instance the prediction was made for.
*
* @return the weight assigned to this prediction.
*/
public double weight() {
return m_Weight;
}
/**
* Calculates the prediction error. This is defined as the predicted
* value minus the actual value.
*
* @return the error for this prediction, or
* MISSING_VALUE if either the actual or predicted value
* is missing.
*/
public double error() {
if ((m_Actual == MISSING_VALUE) ||
(m_Predicted == MISSING_VALUE)) {
return MISSING_VALUE;
}
return m_Predicted - m_Actual;
}
/**
* Sets the prediction intervals for this prediction.
*
* @param predInt the prediction intervals
*/
public void setPredictionIntervals(double[][] predInt) {
m_PredictionIntervals = predInt.clone();
}
/**
* Returns the predictions intervals. Only classifiers implementing the
* IntervalEstimator
interface.
*
* @return the prediction intervals.
* @see IntervalEstimator
*/
public double[][] predictionIntervals() {
return m_PredictionIntervals;
}
/**
* Gets a human readable representation of this prediction.
*
* @return a human readable representation of this prediction.
*/
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append("NUM: ").append(actual()).append(' ').append(predicted());
sb.append(' ').append(weight());
return sb.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8034 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy