All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.functions.Logistic Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    Logistic.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.functions;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.pmml.producer.LogisticProducerHelper;
import weka.core.Aggregateable;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.ConjugateGradientOptimization;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Optimization;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.pmml.PMMLProducer;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.RemoveUseless;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 *  Class for building and using a multinomial logistic
 * regression model with a ridge estimator.
*
* There are some modifications, however, compared to the paper of leCessie and * van Houwelingen(1992):
*
* If there are k classes for n instances with m attributes, the parameter * matrix B to be calculated will be an m*(k-1) matrix.
*
* The probability for class j with the exception of the last class is
*
* Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
*
* The last class has probability
*
* 1-(sum[j=1..(k-1)]Pj(Xi))
* = 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
*
* The (negative) multinomial log-likelihood is thus:
*
* L = -sum[i=1..n]{
* sum[j=1..(k-1)](Yij * ln(Pj(Xi)))
* +(1 - (sum[j=1..(k-1)]Yij))
* * ln(1 - sum[j=1..(k-1)]Pj(Xi))
* } + ridge * (B^2)
*
* In order to find the matrix B for which L is minimised, a Quasi-Newton Method * is used to search for the optimized values of the m*(k-1) variables. Note * that before we use the optimization procedure, we 'squeeze' the matrix B into * a m*(k-1) vector. For details of the optimization procedure, please check * weka.core.Optimization class.
*
* Although original Logistic Regression does not deal with instance weights, we * modify the algorithm a little bit to handle the instance weights.
*
* For more information see:
*
* le Cessie, S., van Houwelingen, J.C. (1992). Ridge Estimators in Logistic * Regression. Applied Statistics. 41(1):191-201.
*
* Note: Missing values are replaced using a ReplaceMissingValuesFilter, and * nominal attributes are transformed into numeric attributes using a * NominalToBinaryFilter. *

* * * BibTeX: * *

 * @article{leCessie1992,
 *    author = {le Cessie, S. and van Houwelingen, J.C.},
 *    journal = {Applied Statistics},
 *    number = {1},
 *    pages = {191-201},
 *    title = {Ridge Estimators in Logistic Regression},
 *    volume = {41},
 *    year = {1992}
 * }
 * 
*

* * * Valid options are: *

* *

 * -D
 *  Turn on debugging output.
 * 
* *
 * -R <ridge>
 *  Set the ridge in the log-likelihood.
 * 
* *
 * -M <number>
 *  Set the maximum number of iterations (default -1, until convergence).
 * 
* * * * @author Xin Xu ([email protected]) * @version $Revision: 11247 $ */ public class Logistic extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler, PMMLProducer, Aggregateable { /** for serialization */ static final long serialVersionUID = 3932117032546553727L; /** The coefficients (optimized parameters) of the model */ protected double[][] m_Par; /** The data saved as a matrix */ protected double[][] m_Data; /** The number of attributes in the model */ protected int m_NumPredictors; /** The index of the class attribute */ protected int m_ClassIndex; /** The number of the class labels */ protected int m_NumClasses; /** The ridge parameter. */ protected double m_Ridge = 1e-8; /** An attribute filter */ private RemoveUseless m_AttFilter; /** The filter used to make attributes numeric. */ private NominalToBinary m_NominalToBinary; /** The filter used to get rid of missing values. */ private ReplaceMissingValues m_ReplaceMissingValues; /** Log-likelihood of the searched model */ protected double m_LL; /** The maximum number of iterations. */ private int m_MaxIts = -1; /** Wether to use conjugate gradient descent rather than BFGS updates. */ private boolean m_useConjugateGradientDescent = false; private Instances m_structure; /** * Returns a string describing this classifier * * @return a description of the classifier suitable for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a multinomial logistic " + "regression model with a ridge estimator.\n\n" + "There are some modifications, however, compared to the paper of " + "leCessie and van Houwelingen(1992): \n\n" + "If there are k classes for n instances with m attributes, the " + "parameter matrix B to be calculated will be an m*(k-1) matrix.\n\n" + "The probability for class j with the exception of the last class is\n\n" + "Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1) \n\n" + "The last class has probability\n\n" + "1-(sum[j=1..(k-1)]Pj(Xi)) \n\t= 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)\n\n" + "The (negative) multinomial log-likelihood is thus: \n\n" + "L = -sum[i=1..n]{\n\tsum[j=1..(k-1)](Yij * ln(Pj(Xi)))" + "\n\t+(1 - (sum[j=1..(k-1)]Yij)) \n\t* ln(1 - sum[j=1..(k-1)]Pj(Xi))" + "\n\t} + ridge * (B^2)\n\n" + "In order to find the matrix B for which L is minimised, a " + "Quasi-Newton Method is used to search for the optimized values of " + "the m*(k-1) variables. Note that before we use the optimization " + "procedure, we 'squeeze' the matrix B into a m*(k-1) vector. For " + "details of the optimization procedure, please check " + "weka.core.Optimization class.\n\n" + "Although original Logistic Regression does not deal with instance " + "weights, we modify the algorithm a little bit to handle the " + "instance weights.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString() + "\n\n" + "Note: Missing values are replaced using a ReplaceMissingValuesFilter, and " + "nominal attributes are transformed into numeric attributes using a " + "NominalToBinaryFilter."; } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ @Override public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "le Cessie, S. and van Houwelingen, J.C."); result.setValue(Field.YEAR, "1992"); result.setValue(Field.TITLE, "Ridge Estimators in Logistic Regression"); result.setValue(Field.JOURNAL, "Applied Statistics"); result.setValue(Field.VOLUME, "41"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "191-201"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ @Override public Enumeration




© 2015 - 2024 Weber Informatics LLC | Privacy Policy