weka.classifiers.functions.supportVector.KernelEvaluation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* KernelEvaluation.java
* Copyright (C) 2006-2012 University of Waikato, Hamilton, New Zealand
*/
package weka.classifiers.functions.supportVector;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Enumeration;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for evaluating Kernels.
*
* @author fracpete (fracpete at waikato dot ac dot nz)
* @version $Revision: 10169 $
*/
public class KernelEvaluation implements RevisionHandler {
/** the result string */
protected StringBuffer m_Result;
/** the kernel evaluation results */
protected double[][] m_Evaluations;
/** the number of performed evaluations */
protected int m_NumEvals;
/** the number of cache hits */
protected int m_NumCacheHits;
/** user-supplied options */
protected String[] m_Options;
/**
* default constructor
*/
public KernelEvaluation() {
super();
m_Result = new StringBuffer();
m_Evaluations = new double[0][0];
m_Options = new String[0];
m_NumEvals = 0;
m_NumCacheHits = 0;
}
/**
* sets the option the user supplied for the kernel
*
* @param options options that were supplied for the kernel
*/
public void setUserOptions(String[] options) {
m_Options = options.clone();
}
/**
* returns the options the user supplied for the kernel
*
* @return the user supplied options for the kernel
*/
public String[] getUserOptions() {
return m_Options.clone();
}
/**
* Generates an option string to output on the commandline.
*
* @param Kernel the Kernel to generate the string for
* @return the option string
*/
protected static String makeOptionString(Kernel Kernel) {
StringBuffer text;
text = new StringBuffer();
// general options
text.append("\nGeneral options:\n\n");
text.append("-t \n");
text.append("\tThe name of the training file.\n");
text.append("-c \n");
text.append("\tSets index of class attribute (default: last).\n");
// Kernel specific options, if any
if (Kernel instanceof OptionHandler) {
text.append("\nOptions specific to "
+ Kernel.getClass().getName().replaceAll(".*\\.", "") + ":\n\n");
Enumeration
© 2015 - 2024 Weber Informatics LLC | Privacy Policy