All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.trees.RandomTree Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    RandomTree.java
 *    Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import java.io.Serializable;
import java.util.Collections;
import java.util.Enumeration;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Random;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.Classifier;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.ContingencyTables;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.PartitionGenerator;
import weka.core.Randomizable;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 
 * Class for constructing a tree that considers K randomly  chosen attributes at each node. Performs no pruning. Also has an option to allow estimation of class probabilities (or target mean in the regression case) based on a hold-out set (backfitting).
 * 

* * Valid options are:

* *

 -K <number of attributes>
 *  Number of attributes to randomly investigate. (default 0)
 *  (<0 = int(log_2(#predictors)+1)).
* *
 -M <minimum number of instances>
 *  Set minimum number of instances per leaf.
 *  (default 1)
* *
 -V <minimum variance for split>
 *  Set minimum numeric class variance proportion
 *  of train variance for split (default 1e-3).
* *
 -S <num>
 *  Seed for random number generator.
 *  (default 1)
* *
 -depth <num>
 *  The maximum depth of the tree, 0 for unlimited.
 *  (default 0)
* *
 -N <num>
 *  Number of folds for backfitting (default 0, no backfitting).
* *
 -U
 *  Allow unclassified instances.
* *
 -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* *
 -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
* * * @author Eibe Frank ([email protected]) * @author Richard Kirkby ([email protected]) * @version $Revision: 10987 $ */ public class RandomTree extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, Randomizable, Drawable, PartitionGenerator { /** for serialization */ private static final long serialVersionUID = -9051119597407396024L; /** The Tree object */ protected Tree m_Tree = null; /** The header information. */ protected Instances m_Info = null; /** Minimum number of instances for leaf. */ protected double m_MinNum = 1.0; /** The number of attributes considered for a split. */ protected int m_KValue = 0; /** The random seed to use. */ protected int m_randomSeed = 1; /** The maximum depth of the tree (0 = unlimited) */ protected int m_MaxDepth = 0; /** Determines how much data is used for backfitting */ protected int m_NumFolds = 0; /** Whether unclassified instances are allowed */ protected boolean m_AllowUnclassifiedInstances = false; /** a ZeroR model in case no model can be built from the data */ protected Classifier m_zeroR; /** * The minimum proportion of the total variance (over all the data) required * for split. */ protected double m_MinVarianceProp = 1e-3; /** * Returns a string describing classifier * * @return a description suitable for displaying in the explorer/experimenter * gui */ public String globalInfo() { return "Class for constructing a tree that considers K randomly " + " chosen attributes at each node. Performs no pruning. Also has" + " an option to allow estimation of class probabilities (or target mean " + "in the regression case) based on a hold-out set (backfitting)."; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minNumTipText() { return "The minimum total weight of the instances in a leaf."; } /** * Get the value of MinNum. * * @return Value of MinNum. */ public double getMinNum() { return m_MinNum; } /** * Set the value of MinNum. * * @param newMinNum Value to assign to MinNum. */ public void setMinNum(double newMinNum) { m_MinNum = newMinNum; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String minVariancePropTipText() { return "The minimum proportion of the variance on all the data " + "that needs to be present at a node in order for splitting to " + "be performed in regression trees."; } /** * Get the value of MinVarianceProp. * * @return Value of MinVarianceProp. */ public double getMinVarianceProp() { return m_MinVarianceProp; } /** * Set the value of MinVarianceProp. * * @param newMinVarianceProp Value to assign to MinVarianceProp. */ public void setMinVarianceProp(double newMinVarianceProp) { m_MinVarianceProp = newMinVarianceProp; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String KValueTipText() { return "Sets the number of randomly chosen attributes. If 0, int(log_2(#predictors) + 1) is used."; } /** * Get the value of K. * * @return Value of K. */ public int getKValue() { return m_KValue; } /** * Set the value of K. * * @param k Value to assign to K. */ public void setKValue(int k) { m_KValue = k; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String seedTipText() { return "The random number seed used for selecting attributes."; } /** * Set the seed for random number generation. * * @param seed the seed */ @Override public void setSeed(int seed) { m_randomSeed = seed; } /** * Gets the seed for the random number generations * * @return the seed for the random number generation */ @Override public int getSeed() { return m_randomSeed; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String maxDepthTipText() { return "The maximum depth of the tree, 0 for unlimited."; } /** * Get the maximum depth of trh tree, 0 for unlimited. * * @return the maximum depth. */ public int getMaxDepth() { return m_MaxDepth; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String numFoldsTipText() { return "Determines the amount of data used for backfitting. One fold is used for " + "backfitting, the rest for growing the tree. (Default: 0, no backfitting)"; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public int getNumFolds() { return m_NumFolds; } /** * Set the value of NumFolds. * * @param newNumFolds Value to assign to NumFolds. */ public void setNumFolds(int newNumFolds) { m_NumFolds = newNumFolds; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String allowUnclassifiedInstancesTipText() { return "Whether to allow unclassified instances."; } /** * Get the value of NumFolds. * * @return Value of NumFolds. */ public boolean getAllowUnclassifiedInstances() { return m_AllowUnclassifiedInstances; } /** * Set the value of AllowUnclassifiedInstances. * * @param newAllowUnclassifiedInstances Value to assign to * AllowUnclassifiedInstances. */ public void setAllowUnclassifiedInstances( boolean newAllowUnclassifiedInstances) { m_AllowUnclassifiedInstances = newAllowUnclassifiedInstances; } /** * Set the maximum depth of the tree, 0 for unlimited. * * @param value the maximum depth. */ public void setMaxDepth(int value) { m_MaxDepth = value; } /** * Lists the command-line options for this classifier. * * @return an enumeration over all possible options */ @Override public Enumeration




© 2015 - 2024 Weber Informatics LLC | Privacy Policy