weka.classifiers.trees.j48.PruneableClassifierTree Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* PruneableClassifierTree.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import java.util.Random;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Class for handling a tree structure that can
* be pruned using a pruning set.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 11006 $
*/
public class PruneableClassifierTree
extends ClassifierTree {
/** for serialization */
static final long serialVersionUID = -555775736857600201L;
/** True if the tree is to be pruned. */
protected boolean pruneTheTree = false;
/** How many subsets of equal size? One used for pruning, the rest for training. */
protected int numSets = 3;
/** Cleanup after the tree has been built. */
protected boolean m_cleanup = true;
/** The random number seed. */
protected int m_seed = 1;
/**
* Constructor for pruneable tree structure. Stores reference
* to associated training data at each node.
*
* @param toSelectLocModel selection method for local splitting model
* @param pruneTree true if the tree is to be pruned
* @param num number of subsets of equal size
* @param cleanup
* @param seed the seed value to use
* @throws Exception if something goes wrong
*/
public PruneableClassifierTree(ModelSelection toSelectLocModel,
boolean pruneTree, int num, boolean cleanup,
int seed)
throws Exception {
super(toSelectLocModel);
pruneTheTree = pruneTree;
numSets = num;
m_cleanup = cleanup;
m_seed = seed;
}
/**
* Returns default capabilities of the classifier tree.
*
* @return the capabilities of this classifier tree
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// attributes
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable(Capability.DATE_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
// class
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
// instances
result.setMinimumNumberInstances(0);
return result;
}
/**
* Method for building a pruneable classifier tree.
*
* @param data the data to build the tree from
* @throws Exception if tree can't be built successfully
*/
public void buildClassifier(Instances data)
throws Exception {
// can classifier tree handle the data?
getCapabilities().testWithFail(data);
// remove instances with missing class
data = new Instances(data);
data.deleteWithMissingClass();
Random random = new Random(m_seed);
data.stratify(numSets);
buildTree(data.trainCV(numSets, numSets - 1, random),
data.testCV(numSets, numSets - 1), !m_cleanup);
if (pruneTheTree) {
prune();
}
if (m_cleanup) {
cleanup(new Instances(data, 0));
}
}
/**
* Prunes a tree.
*
* @throws Exception if tree can't be pruned successfully
*/
public void prune() throws Exception {
if (!m_isLeaf) {
// Prune all subtrees.
for (int i = 0; i < m_sons.length; i++)
son(i).prune();
// Decide if leaf is best choice.
if (Utils.smOrEq(errorsForLeaf(),errorsForTree())) {
// Free son Trees
m_sons = null;
m_isLeaf = true;
// Get NoSplit Model for node.
m_localModel = new NoSplit(localModel().distribution());
}
}
}
/**
* Returns a newly created tree.
*
* @param train the training data
* @param test the test data
* @return the generated tree
* @throws Exception if something goes wrong
*/
protected ClassifierTree getNewTree(Instances train, Instances test)
throws Exception {
PruneableClassifierTree newTree =
new PruneableClassifierTree(m_toSelectModel, pruneTheTree, numSets, m_cleanup,
m_seed);
newTree.buildTree(train, test, !m_cleanup);
return newTree;
}
/**
* Computes estimated errors for tree.
*
* @return the estimated errors
* @throws Exception if error estimate can't be computed
*/
private double errorsForTree() throws Exception {
double errors = 0;
if (m_isLeaf)
return errorsForLeaf();
else{
for (int i = 0; i < m_sons.length; i++)
if (Utils.eq(localModel().distribution().perBag(i), 0)) {
errors += m_test.perBag(i)-
m_test.perClassPerBag(i,localModel().distribution().
maxClass());
} else
errors += son(i).errorsForTree();
return errors;
}
}
/**
* Computes estimated errors for leaf.
*
* @return the estimated errors
* @throws Exception if error estimate can't be computed
*/
private double errorsForLeaf() throws Exception {
return m_test.total()-
m_test.perClass(localModel().distribution().maxClass());
}
/**
* Method just exists to make program easier to read.
*/
private ClassifierSplitModel localModel() {
return (ClassifierSplitModel)m_localModel;
}
/**
* Method just exists to make program easier to read.
*/
private PruneableClassifierTree son(int index) {
return (PruneableClassifierTree)m_sons[index];
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 11006 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy