weka.classifiers.trees.j48.Stats Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Stats.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.j48;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Statistics;
/**
* Class implementing a statistical routine needed by J48 to
* compute its error estimate.
*
* @author Eibe Frank ([email protected])
* @version $Revision: 8034 $
*/
public class Stats
implements RevisionHandler {
/**
* Computes estimated extra error for given total number of instances
* and error using normal approximation to binomial distribution
* (and continuity correction).
*
* @param N number of instances
* @param e observed error
* @param CF confidence value
*/
public static double addErrs(double N, double e, float CF){
// Ignore stupid values for CF
if (CF > 0.5) {
System.err.println("WARNING: confidence value for pruning " +
" too high. Error estimate not modified.");
return 0;
}
// Check for extreme cases at the low end because the
// normal approximation won't work
if (e < 1) {
// Base case (i.e. e == 0) from documenta Geigy Scientific
// Tables, 6th edition, page 185
double base = N * (1 - Math.pow(CF, 1 / N));
if (e == 0) {
return base;
}
// Use linear interpolation between 0 and 1 like C4.5 does
return base + e * (addErrs(N, 1, CF) - base);
}
// Use linear interpolation at the high end (i.e. between N - 0.5
// and N) because of the continuity correction
if (e + 0.5 >= N) {
// Make sure that we never return anything smaller than zero
return Math.max(N - e, 0);
}
// Get z-score corresponding to CF
double z = Statistics.normalInverse(1 - CF);
// Compute upper limit of confidence interval
double f = (e + 0.5) / N;
double r = (f + (z * z) / (2 * N) +
z * Math.sqrt((f / N) -
(f * f / N) +
(z * z / (4 * N * N)))) /
(1 + (z * z) / N);
return (r * N) - e;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8034 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy