weka.classifiers.trees.m5.Values Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Values.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers.trees.m5;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
/**
* Stores some statistics.
* @author Yong Wang ([email protected])
* @version $Revision: 8034 $
*/
public final class Values
implements RevisionHandler {
int numInstances; // number of the instances
int missingInstances; // number of the instances with missing values
int first; // index of the first instance
int last; // index of the last instance
int attr; // attribute
double sum; // sum of the instances for attribute
double sqrSum; // squared sum of the instances for attribute
double va; // variance
double sd; // standard deviation
/**
* Constructs an object which stores some statistics of the instances such
* as sum, squared sum, variance, standard deviation
* @param low the index of the first instance
* @param high the index of the last instance
* @param attribute the attribute
* @param inst the instances
*/
public Values(int low,int high,int attribute,Instances inst){
int i,count=0;
double value;
numInstances = high-low+1;
missingInstances = 0;
first = low;
last = high;
attr = attribute;
sum=0.0;
sqrSum=0.0;
for(i=first;i<=last;i++){
if(inst.instance(i).isMissing(attr)==false){
count++;
value = inst.instance(i).value(attr);
sum += value;
sqrSum += value * value;
}
if(count >1){
va = (sqrSum - sum * sum/count)/count;
va = Math.abs(va);
sd = Math.sqrt(va);
}
else {va = 0.0; sd = 0.0;}
}
}
/**
* Converts the stats to a string
* @return the converted string
*/
public final String toString(){
StringBuffer text = new StringBuffer();
text.append("Print statistic values of instances (" + first + "-" + last +
"\n");
text.append(" Number of instances:\t" + numInstances + "\n");
text.append(" NUmber of instances with unknowns:\t" + missingInstances +
"\n");
text.append(" Attribute:\t\t\t:" + attr + "\n");
text.append(" Sum:\t\t\t" + sum + "\n");
text.append(" Squared sum:\t\t" + sqrSum + "\n");
text.append(" Stanard Deviation:\t\t" + sd + "\n");
return text.toString();
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8034 $");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy