All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.clusterers.AbstractClusterer Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 *    AbstractClusterer.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.clusterers;

import java.io.Serializable;
import java.util.Enumeration;
import java.util.Vector;

import weka.core.Capabilities;
import weka.core.CapabilitiesHandler;
import weka.core.CapabilitiesIgnorer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.SerializedObject;
import weka.core.Utils;

/**
 * Abstract clusterer.
 * 
 * @author Mark Hall ([email protected])
 * @version $Revision: 11006 $
 */
public abstract class AbstractClusterer implements Clusterer, Cloneable,
                                                   Serializable, CapabilitiesHandler, 
                                                   RevisionHandler, OptionHandler,
                                                   CapabilitiesIgnorer {

  /** for serialization */
  private static final long serialVersionUID = -6099962589663877632L;

  /** Whether the clusterer is run in debug mode. */
  protected boolean m_Debug = false;

  /** Whether capabilities should not be checked before clusterer is built. */
  protected boolean m_DoNotCheckCapabilities = false;

  // ===============
  // Public methods.
  // ===============

  /**
   * Generates a clusterer. Has to initialize all fields of the clusterer that
   * are not being set via options.
   * 
   * @param data set of instances serving as training data
   * @exception Exception if the clusterer has not been generated successfully
   */
  @Override
  public abstract void buildClusterer(Instances data) throws Exception;

  /**
   * Classifies a given instance. Either this or distributionForInstance() needs
   * to be implemented by subclasses.
   * 
   * @param instance the instance to be assigned to a cluster
   * @return the number of the assigned cluster as an integer
   * @exception Exception if instance could not be clustered successfully
   */
  @Override
  public int clusterInstance(Instance instance) throws Exception {

    double[] dist = distributionForInstance(instance);

    if (dist == null) {
      throw new Exception("Null distribution predicted");
    }

    if (Utils.sum(dist) <= 0) {
      throw new Exception("Unable to cluster instance");
    }
    return Utils.maxIndex(dist);
  }

  /**
   * Predicts the cluster memberships for a given instance. Either this or
   * clusterInstance() needs to be implemented by subclasses.
   * 
   * @param instance the instance to be assigned a cluster.
   * @return an array containing the estimated membership probabilities of the
   *         test instance in each cluster (this should sum to at most 1)
   * @exception Exception if distribution could not be computed successfully
   */
  @Override
  public double[] distributionForInstance(Instance instance) throws Exception {

    double[] d = new double[numberOfClusters()];

    d[clusterInstance(instance)] = 1.0;

    return d;
  }

  /**
   * Returns the number of clusters.
   * 
   * @return the number of clusters generated for a training dataset.
   * @exception Exception if number of clusters could not be returned
   *              successfully
   */
  @Override
  public abstract int numberOfClusters() throws Exception;

  /**
   * Returns an enumeration describing the available options.
   * 
   * @return an enumeration of all the available options.
   */
  @Override
  public Enumeration

* * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ @Override public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag("output-debug-info", options)); setDoNotCheckCapabilities(Utils.getFlag("do-not-check-capabilities", options)); } /** * Set debugging mode. * * @param debug true if debug output should be printed */ public void setDebug(boolean debug) { m_Debug = debug; } /** * Get whether debugging is turned on. * * @return true if debugging output is on */ public boolean getDebug() { return m_Debug; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String debugTipText() { return "If set to true, clusterer may output additional info to " + "the console."; } /** * Set whether not to check capabilities. * * @param doNotCheckCapabilities true if capabilities are not to be checked. */ public void setDoNotCheckCapabilities(boolean doNotCheckCapabilities) { m_DoNotCheckCapabilities = doNotCheckCapabilities; } /** * Get whether capabilities checking is turned off. * * @return true if capabilities checking is turned off. */ public boolean getDoNotCheckCapabilities() { return m_DoNotCheckCapabilities; } /** * Returns the tip text for this property * * @return tip text for this property suitable for displaying in the * explorer/experimenter gui */ public String doNotCheckCapabilitiesTipText() { return "If set, clusterer capabilities are not checked before clusterer is built" + " (Use with caution to reduce runtime)."; } /** * Gets the current settings of the clusterer. * * @return an array of strings suitable for passing to setOptions */ @Override public String[] getOptions() { Vector options = new Vector(); if (getDebug()) { options.add("-output-debug-info"); } if (getDoNotCheckCapabilities()) { options.add("-do-not-check-capabilities"); } return options.toArray(new String[0]); } /** * Creates a new instance of a clusterer given it's class name and (optional) * arguments to pass to it's setOptions method. If the clusterer implements * OptionHandler and the options parameter is non-null, the clusterer will * have it's options set. * * @param clustererName the fully qualified class name of the clusterer * @param options an array of options suitable for passing to setOptions. May * be null. * @return the newly created search object, ready for use. * @exception Exception if the clusterer class name is invalid, or the options * supplied are not acceptable to the clusterer. */ public static Clusterer forName(String clustererName, String[] options) throws Exception { return (Clusterer) Utils.forName(Clusterer.class, clustererName, options); } /** * Creates a deep copy of the given clusterer using serialization. * * @param model the clusterer to copy * @return a deep copy of the clusterer * @exception Exception if an error occurs */ public static Clusterer makeCopy(Clusterer model) throws Exception { return (Clusterer) new SerializedObject(model).getObject(); } /** * Creates copies of the current clusterer. Note that this method now uses * Serialization to perform a deep copy, so the Clusterer object must be fully * Serializable. Any currently built model will now be copied as well. * * @param model an example clusterer to copy * @param num the number of clusterer copies to create. * @return an array of clusterers. * @exception Exception if an error occurs */ public static Clusterer[] makeCopies(Clusterer model, int num) throws Exception { if (model == null) { throw new Exception("No model clusterer set"); } Clusterer[] clusterers = new Clusterer[num]; SerializedObject so = new SerializedObject(model); for (int i = 0; i < clusterers.length; i++) { clusterers[i] = (Clusterer) so.getObject(); } return clusterers; } /** * Returns the Capabilities of this clusterer. Derived clusterers have to * override this method to enable capabilities. * * @return the capabilities of this object * @see Capabilities */ @Override public Capabilities getCapabilities() { Capabilities result; result = new Capabilities(this); result.enableAll(); return result; } /** * Returns the revision string. * * @return the revision */ @Override public String getRevision() { return RevisionUtils.extract("$Revision: 11006 $"); } /** * runs the clusterer instance with the given options. * * @param clusterer the clusterer to run * @param options the commandline options */ public static void runClusterer(Clusterer clusterer, String[] options) { try { System.out.println(ClusterEvaluation .evaluateClusterer(clusterer, options)); } catch (Exception e) { if ((e.getMessage() == null) || ((e.getMessage() != null) && (e.getMessage().indexOf( "General options") == -1))) { e.printStackTrace(); } else { System.err.println(e.getMessage()); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy