All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.neighboursearch.kdtrees.MedianOfWidestDimension Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * MedianOfWidestDimension.java
 * Copyright (C) 2007-2012 University of Waikato, Hamilton, New Zealand
 */

package weka.core.neighboursearch.kdtrees;

import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;

/**
 
 * The class that splits a KDTree node based on the median value of a dimension in which the node's points have the widest spread.
*
* For more information see also:
*
* Jerome H. Friedman, Jon Luis Bentley, Raphael Ari Finkel (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematics Software. 3(3):209-226. *

* * BibTeX: *

 * @article{Friedman1977,
 *    author = {Jerome H. Friedman and Jon Luis Bentley and Raphael Ari Finkel},
 *    journal = {ACM Transactions on Mathematics Software},
 *    month = {September},
 *    number = {3},
 *    pages = {209-226},
 *    title = {An Algorithm for Finding Best Matches in Logarithmic Expected Time},
 *    volume = {3},
 *    year = {1977}
 * }
 * 
*

* * * @author Ashraf M. Kibriya (amk14[at-the-rate]cs[dot]waikato[dot]ac[dot]nz) * @version $Revision: 8034 $ */ public class MedianOfWidestDimension extends KDTreeNodeSplitter implements TechnicalInformationHandler { /** for serialization. */ private static final long serialVersionUID = 1383443320160540663L; /** * Returns a string describing this nearest neighbour search algorithm. * * @return a description of the algorithm for displaying in the * explorer/experimenter gui */ public String globalInfo() { return "The class that splits a KDTree node based on the median value of " + "a dimension in which the node's points have the widest spread.\n\n" + "For more information see also:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing detailed * information about the technical background of this class, e.g., paper * reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Jerome H. Friedman and Jon Luis Bentley and Raphael Ari Finkel"); result.setValue(Field.YEAR, "1977"); result.setValue(Field.TITLE, "An Algorithm for Finding Best Matches in Logarithmic Expected Time"); result.setValue(Field.JOURNAL, "ACM Transactions on Mathematics Software"); result.setValue(Field.PAGES, "209-226"); result.setValue(Field.MONTH, "September"); result.setValue(Field.VOLUME, "3"); result.setValue(Field.NUMBER, "3"); return result; } /** * Splits a node into two based on the median value of the dimension * in which the points have the widest spread. After splitting two * new nodes are created and correctly initialised. And, node.left * and node.right are set appropriately. * * @param node The node to split. * @param numNodesCreated The number of nodes that so far have been * created for the tree, so that the newly created nodes are * assigned correct/meaningful node numbers/ids. * @param nodeRanges The attributes' range for the points inside * the node that is to be split. * @param universe The attributes' range for the whole * point-space. * @throws Exception If there is some problem in splitting the * given node. */ public void splitNode(KDTreeNode node, int numNodesCreated, double[][] nodeRanges, double[][] universe) throws Exception { correctlyInitialized(); int splitDim = widestDim(nodeRanges, universe); //In this case median is defined to be either the middle value (in case of //odd number of values) or the left of the two middle values (in case of //even number of values). int medianIdxIdx = node.m_Start + (node.m_End-node.m_Start)/2; //the following finds the median and also re-arranges the array so all //elements to the left are < median and those to the right are > median. int medianIdx = select(splitDim, m_InstList, node.m_Start, node.m_End, (node.m_End-node.m_Start)/2+1); node.m_SplitDim = splitDim; node.m_SplitValue = m_Instances.instance(m_InstList[medianIdx]).value(splitDim); node.m_Left = new KDTreeNode(numNodesCreated+1, node.m_Start, medianIdxIdx, m_EuclideanDistance.initializeRanges(m_InstList, node.m_Start, medianIdxIdx)); node.m_Right = new KDTreeNode(numNodesCreated+2, medianIdxIdx+1, node.m_End, m_EuclideanDistance.initializeRanges(m_InstList, medianIdxIdx+1, node.m_End)); } /** * Partitions the instances around a pivot. Used by quicksort and * kthSmallestValue. * * @param attIdx The attribution/dimension based on which the * instances should be partitioned. * @param index The master index array containing indices of the * instances. * @param l The begining index of the portion of master index * array that should be partitioned. * @param r The end index of the portion of master index array * that should be partitioned. * @return the index of the middle element */ protected int partition(int attIdx, int[] index, int l, int r) { double pivot = m_Instances.instance(index[(l + r) / 2]).value(attIdx); int help; while (l < r) { while ((m_Instances.instance(index[l]).value(attIdx) < pivot) && (l < r)) { l++; } while ((m_Instances.instance(index[r]).value(attIdx) > pivot) && (l < r)) { r--; } if (l < r) { help = index[l]; index[l] = index[r]; index[r] = help; l++; r--; } } if ((l == r) && (m_Instances.instance(index[r]).value(attIdx) > pivot)) { r--; } return r; } /** * Implements computation of the kth-smallest element according * to Manber's "Introduction to Algorithms". * * @param attIdx The dimension/attribute of the instances in * which to find the kth-smallest element. * @param indices The master index array containing indices of * the instances. * @param left The begining index of the portion of the master * index array in which to find the kth-smallest element. * @param right The end index of the portion of the master index * array in which to find the kth-smallest element. * @param k The value of k * @return The index of the kth-smallest element */ public int select(int attIdx, int[] indices, int left, int right, int k) { if (left == right) { return left; } else { int middle = partition(attIdx, indices, left, right); if ((middle - left + 1) >= k) { return select(attIdx, indices, left, middle, k); } else { return select(attIdx, indices, middle + 1, right, k - (middle - left + 1)); } } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy