All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.core.pmml.jaxbbindings.PredictiveModelQuality Maven / Gradle / Ivy

Go to download

The Waikato Environment for Knowledge Analysis (WEKA), a machine learning workbench. This version represents the developer version, the "bleeding edge" of development, you could say. New functionality gets added to this version.

There is a newer version: 3.9.6
Show newest version
//
// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference Implementation, v2.0-b52-fcs 
// See http://java.sun.com/xml/jaxb 
// Any modifications to this file will be lost upon recompilation of the source schema. 
// Generated on: 2013.12.20 at 12:48:21 PM GMT 
//


package weka.core.pmml.jaxbbindings;

import java.util.ArrayList;
import java.util.List;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;


/**
 * 

Java class for PredictiveModelQuality element declaration. * *

The following schema fragment specifies the expected content contained within this class. * *

 * <element name="PredictiveModelQuality">
 *   <complexType>
 *     <complexContent>
 *       <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 *         <sequence>
 *           <element ref="{http://www.dmg.org/PMML-4_1}Extension" maxOccurs="unbounded" minOccurs="0"/>
 *           <element ref="{http://www.dmg.org/PMML-4_1}ConfusionMatrix" minOccurs="0"/>
 *           <element ref="{http://www.dmg.org/PMML-4_1}LiftData" minOccurs="0"/>
 *           <element ref="{http://www.dmg.org/PMML-4_1}ROC" minOccurs="0"/>
 *         </sequence>
 *         <attribute name="AIC" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="AICc" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="BIC" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="adj-r-squared" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="dataName" type="{http://www.w3.org/2001/XMLSchema}string" />
 *         <attribute name="dataUsage" default="training">
 *           <simpleType>
 *             <restriction base="{http://www.w3.org/2001/XMLSchema}string">
 *               <enumeration value="training"/>
 *               <enumeration value="test"/>
 *               <enumeration value="validation"/>
 *             </restriction>
 *           </simpleType>
 *         </attribute>
 *         <attribute name="degreesOfFreedom" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="fStatistic" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="meanAbsoluteError" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="meanError" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="meanSquaredError" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="numOfPredictors" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="numOfRecords" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="numOfRecordsWeighted" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="r-squared" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="rootMeanSquaredError" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="sumSquaredError" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="sumSquaredRegression" type="{http://www.dmg.org/PMML-4_1}NUMBER" />
 *         <attribute name="targetField" use="required" type="{http://www.w3.org/2001/XMLSchema}string" />
 *       </restriction>
 *     </complexContent>
 *   </complexType>
 * </element>
 * 
* * */ @XmlAccessorType(XmlAccessType.FIELD) @XmlType(name = "", propOrder = { "extension", "confusionMatrix", "liftData", "roc" }) @XmlRootElement(name = "PredictiveModelQuality") public class PredictiveModelQuality { @XmlElement(name = "Extension", namespace = "http://www.dmg.org/PMML-4_1", required = true) protected List extension; @XmlElement(name = "ConfusionMatrix", namespace = "http://www.dmg.org/PMML-4_1") protected ConfusionMatrix confusionMatrix; @XmlElement(name = "LiftData", namespace = "http://www.dmg.org/PMML-4_1") protected LiftData liftData; @XmlElement(name = "ROC", namespace = "http://www.dmg.org/PMML-4_1") protected ROC roc; @XmlAttribute(name = "AIC") protected Double aic; @XmlAttribute(name = "AICc") protected Double aiCc; @XmlAttribute(name = "BIC") protected Double bic; @XmlAttribute(name = "adj-r-squared") protected Double adjRSquared; @XmlAttribute protected String dataName; @XmlAttribute protected String dataUsage; @XmlAttribute protected Double degreesOfFreedom; @XmlAttribute protected Double fStatistic; @XmlAttribute protected Double meanAbsoluteError; @XmlAttribute protected Double meanError; @XmlAttribute protected Double meanSquaredError; @XmlAttribute protected Double numOfPredictors; @XmlAttribute protected Double numOfRecords; @XmlAttribute protected Double numOfRecordsWeighted; @XmlAttribute(name = "r-squared") protected Double rSquared; @XmlAttribute protected Double rootMeanSquaredError; @XmlAttribute protected Double sumSquaredError; @XmlAttribute protected Double sumSquaredRegression; @XmlAttribute(required = true) protected String targetField; /** * Gets the value of the extension property. * *

* This accessor method returns a reference to the live list, * not a snapshot. Therefore any modification you make to the * returned list will be present inside the JAXB object. * This is why there is not a set method for the extension property. * *

* For example, to add a new item, do as follows: *

     *    getExtension().add(newItem);
     * 
* * *

* Objects of the following type(s) are allowed in the list * {@link Extension } * * */ public List getExtension() { if (extension == null) { extension = new ArrayList(); } return this.extension; } /** * Gets the value of the confusionMatrix property. * * @return * possible object is * {@link ConfusionMatrix } * */ public ConfusionMatrix getConfusionMatrix() { return confusionMatrix; } /** * Sets the value of the confusionMatrix property. * * @param value * allowed object is * {@link ConfusionMatrix } * */ public void setConfusionMatrix(ConfusionMatrix value) { this.confusionMatrix = value; } /** * Gets the value of the liftData property. * * @return * possible object is * {@link LiftData } * */ public LiftData getLiftData() { return liftData; } /** * Sets the value of the liftData property. * * @param value * allowed object is * {@link LiftData } * */ public void setLiftData(LiftData value) { this.liftData = value; } /** * Gets the value of the roc property. * * @return * possible object is * {@link ROC } * */ public ROC getROC() { return roc; } /** * Sets the value of the roc property. * * @param value * allowed object is * {@link ROC } * */ public void setROC(ROC value) { this.roc = value; } /** * Gets the value of the aic property. * * @return * possible object is * {@link Double } * */ public Double getAIC() { return aic; } /** * Sets the value of the aic property. * * @param value * allowed object is * {@link Double } * */ public void setAIC(Double value) { this.aic = value; } /** * Gets the value of the aiCc property. * * @return * possible object is * {@link Double } * */ public Double getAICc() { return aiCc; } /** * Sets the value of the aiCc property. * * @param value * allowed object is * {@link Double } * */ public void setAICc(Double value) { this.aiCc = value; } /** * Gets the value of the bic property. * * @return * possible object is * {@link Double } * */ public Double getBIC() { return bic; } /** * Sets the value of the bic property. * * @param value * allowed object is * {@link Double } * */ public void setBIC(Double value) { this.bic = value; } /** * Gets the value of the adjRSquared property. * * @return * possible object is * {@link Double } * */ public Double getAdjRSquared() { return adjRSquared; } /** * Sets the value of the adjRSquared property. * * @param value * allowed object is * {@link Double } * */ public void setAdjRSquared(Double value) { this.adjRSquared = value; } /** * Gets the value of the dataName property. * * @return * possible object is * {@link String } * */ public String getDataName() { return dataName; } /** * Sets the value of the dataName property. * * @param value * allowed object is * {@link String } * */ public void setDataName(String value) { this.dataName = value; } /** * Gets the value of the dataUsage property. * * @return * possible object is * {@link String } * */ public String getDataUsage() { if (dataUsage == null) { return "training"; } else { return dataUsage; } } /** * Sets the value of the dataUsage property. * * @param value * allowed object is * {@link String } * */ public void setDataUsage(String value) { this.dataUsage = value; } /** * Gets the value of the degreesOfFreedom property. * * @return * possible object is * {@link Double } * */ public Double getDegreesOfFreedom() { return degreesOfFreedom; } /** * Sets the value of the degreesOfFreedom property. * * @param value * allowed object is * {@link Double } * */ public void setDegreesOfFreedom(Double value) { this.degreesOfFreedom = value; } /** * Gets the value of the fStatistic property. * * @return * possible object is * {@link Double } * */ public Double getFStatistic() { return fStatistic; } /** * Sets the value of the fStatistic property. * * @param value * allowed object is * {@link Double } * */ public void setFStatistic(Double value) { this.fStatistic = value; } /** * Gets the value of the meanAbsoluteError property. * * @return * possible object is * {@link Double } * */ public Double getMeanAbsoluteError() { return meanAbsoluteError; } /** * Sets the value of the meanAbsoluteError property. * * @param value * allowed object is * {@link Double } * */ public void setMeanAbsoluteError(Double value) { this.meanAbsoluteError = value; } /** * Gets the value of the meanError property. * * @return * possible object is * {@link Double } * */ public Double getMeanError() { return meanError; } /** * Sets the value of the meanError property. * * @param value * allowed object is * {@link Double } * */ public void setMeanError(Double value) { this.meanError = value; } /** * Gets the value of the meanSquaredError property. * * @return * possible object is * {@link Double } * */ public Double getMeanSquaredError() { return meanSquaredError; } /** * Sets the value of the meanSquaredError property. * * @param value * allowed object is * {@link Double } * */ public void setMeanSquaredError(Double value) { this.meanSquaredError = value; } /** * Gets the value of the numOfPredictors property. * * @return * possible object is * {@link Double } * */ public Double getNumOfPredictors() { return numOfPredictors; } /** * Sets the value of the numOfPredictors property. * * @param value * allowed object is * {@link Double } * */ public void setNumOfPredictors(Double value) { this.numOfPredictors = value; } /** * Gets the value of the numOfRecords property. * * @return * possible object is * {@link Double } * */ public Double getNumOfRecords() { return numOfRecords; } /** * Sets the value of the numOfRecords property. * * @param value * allowed object is * {@link Double } * */ public void setNumOfRecords(Double value) { this.numOfRecords = value; } /** * Gets the value of the numOfRecordsWeighted property. * * @return * possible object is * {@link Double } * */ public Double getNumOfRecordsWeighted() { return numOfRecordsWeighted; } /** * Sets the value of the numOfRecordsWeighted property. * * @param value * allowed object is * {@link Double } * */ public void setNumOfRecordsWeighted(Double value) { this.numOfRecordsWeighted = value; } /** * Gets the value of the rSquared property. * * @return * possible object is * {@link Double } * */ public Double getRSquared() { return rSquared; } /** * Sets the value of the rSquared property. * * @param value * allowed object is * {@link Double } * */ public void setRSquared(Double value) { this.rSquared = value; } /** * Gets the value of the rootMeanSquaredError property. * * @return * possible object is * {@link Double } * */ public Double getRootMeanSquaredError() { return rootMeanSquaredError; } /** * Sets the value of the rootMeanSquaredError property. * * @param value * allowed object is * {@link Double } * */ public void setRootMeanSquaredError(Double value) { this.rootMeanSquaredError = value; } /** * Gets the value of the sumSquaredError property. * * @return * possible object is * {@link Double } * */ public Double getSumSquaredError() { return sumSquaredError; } /** * Sets the value of the sumSquaredError property. * * @param value * allowed object is * {@link Double } * */ public void setSumSquaredError(Double value) { this.sumSquaredError = value; } /** * Gets the value of the sumSquaredRegression property. * * @return * possible object is * {@link Double } * */ public Double getSumSquaredRegression() { return sumSquaredRegression; } /** * Sets the value of the sumSquaredRegression property. * * @param value * allowed object is * {@link Double } * */ public void setSumSquaredRegression(Double value) { this.sumSquaredRegression = value; } /** * Gets the value of the targetField property. * * @return * possible object is * {@link String } * */ public String getTargetField() { return targetField; } /** * Sets the value of the targetField property. * * @param value * allowed object is * {@link String } * */ public void setTargetField(String value) { this.targetField = value; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy