weka.estimators.PoissonEstimator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of weka-dev Show documentation
Show all versions of weka-dev Show documentation
The Waikato Environment for Knowledge Analysis (WEKA), a machine
learning workbench. This version represents the developer version, the
"bleeding edge" of development, you could say. New functionality gets added
to this version.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* PoissonEstimator.java
* Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
*
*/
package weka.estimators;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.RevisionUtils;
import weka.core.Utils;
/**
* Simple probability estimator that places a single Poisson distribution
* over the observed values.
*
* @author Len Trigg ([email protected])
* @version $Revision: 8034 $
*/
public class PoissonEstimator
extends Estimator
implements IncrementalEstimator {
/** for serialization */
private static final long serialVersionUID = 7669362595289236662L;
/** The number of values seen */
private double m_NumValues;
/** The sum of the values seen */
private double m_SumOfValues;
/**
* The average number of times
* an event occurs in an interval.
*/
private double m_Lambda;
/**
* Calculates the log factorial of a number.
*
* @param x input number.
* @return log factorial of x.
*/
private double logFac(double x) {
double result = 0;
for (double i = 2; i <= x; i++) {
result += Math.log(i);
}
return result;
}
/**
* Returns value for Poisson distribution
*
* @param x the argument to the kernel function
* @return the value for a Poisson kernel
*/
private double Poisson(double x) {
return Math.exp(-m_Lambda + (x * Math.log(m_Lambda)) - logFac(x));
}
/**
* Add a new data value to the current estimator.
*
* @param data the new data value
* @param weight the weight assigned to the data value
*/
public void addValue(double data, double weight) {
m_NumValues += weight;
m_SumOfValues += data * weight;
if (m_NumValues != 0) {
m_Lambda = m_SumOfValues / m_NumValues;
}
}
/**
* Get a probability estimate for a value
*
* @param data the value to estimate the probability of
* @return the estimated probability of the supplied value
*/
public double getProbability(double data) {
return Poisson(data);
}
/** Display a representation of this estimator */
public String toString() {
return "Poisson Lambda = " + Utils.doubleToString(m_Lambda, 4, 2) + "\n";
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
// class
if (!m_noClass) {
result.enable(Capability.NOMINAL_CLASS);
result.enable(Capability.MISSING_CLASS_VALUES);
} else {
result.enable(Capability.NO_CLASS);
}
// attributes
result.enable(Capability.NUMERIC_ATTRIBUTES);
return result;
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 8034 $");
}
/**
* Main method for testing this class.
*
* @param argv should contain a sequence of numeric values
*/
public static void main(String [] argv) {
try {
if (argv.length == 0) {
System.out.println("Please specify a set of instances.");
return;
}
PoissonEstimator newEst = new PoissonEstimator();
for(int i = 0; i < argv.length; i++) {
double current = Double.valueOf(argv[i]).doubleValue();
System.out.println(newEst);
System.out.println("Prediction for " + current
+ " = " + newEst.getProbability(current));
newEst.addValue(current, 1);
}
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy